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Abstract

Libraries are essential for software development in any language. Access to the ex-
tensive collection of high-quality libraries provided by the Microsoft .NET Frame-
work is, understandably, something that many programmers require. This thesis
addresses the challenge of providing access to .NET libraries from Haskell by de-
veloping a runtime bridge, called Salsa, between their respective runtime systems.
In doing this, a new technique for binding object-oriented subtyping and method
overloading in Haskell was developed, which is type safe and has a convenient
syntax.
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1

Introduction

Libraries are essential for software development in any language. In many cases
the choice of libraries dictates the choice of programming language. This is
unfortunate since it excludes great languages that would otherwise be a perfect
tool for the job.

Haskell is a purely functional, lazy, general-purpose programming language with
a sophisticated type system, high-quality native-code compilers, and elegant li-
braries. It is an attractive choice for many programming tasks, especially since
it allows the programmer to work at a high level of abstraction.

Microsoft’s .NET Framework [3] is an object-oriented software platform that in-
cludes, among other features, a virtual-machine runtime environment and an
extensive collection of high-quality libraries for a number of domains. It is es-
sential for writing modern applications on the Windows platform, as well as in
organisations with existing investments in Microsoft technology.

Can we have the benefits of both Haskell and .NET? The ability to use .NET
libraries from Haskell is a particularly attractive combination. Unfortunately, the
Haskell and .NET worlds are far apart, and despite earlier attempts at interop-
erability, no satisfactory solution has been developed to date.

This thesis shows that it is possible to have the benefits of both Haskell and
.NET, by developing a runtime bridge between the two systems that allows them
to interoperate. The bridge, called Salsa, focuses on providing convenient and
natural access to .NET libraries from Haskell. The difference between Haskell
and .NET, with respect to their runtime environments and type systems, makes
this a challenging implementation and research task.

Beyond describing the design and implementation of the bridge, and how it ad-
dresses the challenges involved, this thesis presents new techniques for binding
object-oriented concepts in Haskell. The use of labels to bind .NET types and
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members, is described; as is the use of type-level algorithms for supporting sub-
type polymorphism and method overloading. Both of these techniques allow for
type-safe access to object-oriented concepts with a natural syntax.

Overview

Chapter 2 outlines the goals of this thesis in order to accurately describe the
scope of the work.

Chapter 3 describes relevant background material, including type families, a re-
cent extension to the Haskell type system that is employed in this work.

Chapter 4 describes the various problems that arise in building a bridge that
satisfies the goals outlined in Chapter 2.

Chapter 5 analyses existing solutions and other related work, noting how they
differ from, or support, this work.

Chapter 6 gives an overview of the design and implementation of the bridge,
including how it addresses the challenges described Chapter 4.

Chapter 7 shows how labels can be used to map .NET types and their members
into Haskell with a natural syntax.

Chapter 8 describes a technique for performing overload resolution and implicit
conversions in the bridge, by implementing type-level algorithms using type func-
tions.

Chapter 9 demonstrates how the bridge can be used to interoperate with .NET
libraries by presenting a small sample program.

Chapter 10 concludes this thesis and gives directions for future work.
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2

Goals

The goal of this thesis is to allow Haskell and .NET programs to interoperate
by building a software bridge between the Haskell runtime system and .NET
execution engine. The focus of the bridge is to provide convenient access to
.NET libraries from Haskell, but it must also provide sufficient access to Haskell
from .NET so that typical .NET libraries can be used.

There are a number of ways of going about developing such a bridge. Design
decisions and compromises must be made. To guide the making of these decisions,
a number of aspirations for the work are described below. These aspirations are
also useful for scoping the work and for evaluating existing work.

Usability .NET libraries should be relatively natural and easy to use from
Haskell. The benchmark for this goal is C#; the closer the bridge ap-
proximates C# in this respect, the better. Bindings are typically forced
to make compromises in this space because of the mismatch between func-
tional and object-oriented programming (especially with respect to their
type systems).

Safety Incorrect use of the bridge itself should not be able to cause the Haskell
program to crash (violate run-time safety). Ideally, the bridge should en-
force the same static checks that a typical .NET compiler would enforce.
Again, C# can be used as a benchmark.

Convenience Users of the bridge should not have to write boilerplate code in
order to use .NET libraries.

Lightweight The system should not impose heavy changes to the way that
Haskell programs are developed and executed. This excludes making major
extensions to the language and any retargeting of the compiler.
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Practicality The system should be useful in real-world contexts. This implies
that the bridge should support a sufficient feature set and be reasonably
straightforward to deploy.

Ultimately the goal is to allow anyone to take advantage of the benefits of Haskell
and the benefits of .NET when writing applications, without throwing away the
existing investment in native Haskell implementations and libraries.

Non-goals of the project

Why not compile Haskell code directly to the .NET Common Intermediate Lan-
guage (CIL)? Retargeting a Haskell compiler so that it generates CIL is an obvious
approach to solving the issue of Haskell and .NET interoperability. Haskell code
would then run directly on the .NET runtime, and the Haskell runtime system
would become the .NET runtime, eliminating the need for communication be-
tween the two. There are a number of reasons however, that make this approach
an inappropriate choice for this project. They include:

Enormity of the task Retargeting a native-code Haskell compiler to a stack-
based virtual machine is a large and difficult task. This is evident in the way
O’Boyle’s honours thesis [19] attempts the task, which uses three different
compilers (GHC, the Mondrian compiler, and a C# compiler) as well as a
custom translator in order to compile Haskell code to CIL.

Unacceptable performance The design of .NET and its execution engine is
clearly focused on strict, statically typed, object-oriented languages. Pro-
ducing efficient .NET code for a typical Haskell program (employing lazy
evaluation and higher-order functions), is well beyond the scope of an un-
dergraduate thesis.

Heavyweight approach One of the goals of this project is to provide a lightweight
means of accessing .NET libraries for real-world Haskell programs. Re-
targeting a full-featured Haskell compiler is not generally considered a
lightweight approach.

More importantly, the retargeting approach only solves part of the problem. The
low-level issue of runtime system interoperation is eliminated, but the challenge of
mapping between Haskell and .NET concepts remains. Retargeting is simply too
much work for little gain. Providing the interoperability in the form of a runtime
bridge is therefore a more practical solution given the goals of the project.
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3

Background

3.1 .NET and C#

Some background knowledge of both .NET and C# is required to fully appreciate
this thesis. Given the task of interoperability with .NET, it is clear that some
knowledge of .NET is required. In many cases however, the bridge must deal
with issues that the .NET specification defers to the language designer. Where a
concrete language is required, we use C# because of its very close correspondence
with .NET’s type and object system. In fact, .NET and C# are essentially
interchangeable in the context of this work.

3.1.1 Definitions

C# and the .NET framework carry with them a substantial collection of acronyms
and new terms. Definitions of relevant acronyms and terms in the context of this
thesis are given below for the benefit of readers who are familiar with object-
oriented systems, but not with .NET in particular.

.NET execution engine: the .NET virtual-machine.

Common Language Runtime (CLR): Microsoft’s implementation of the .NET
execution engine.

Mono: an open-source implementation of the .NET execution engine.

Common Intermediate Language (CIL): the specification of .NET byte-code.

Managed code: code that is executed by the .NET execution engine.

Assembly: a container of .NET code and associated metadata. Similar to a
shared library or executable file.
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Reference type: a .NET type that is stored on the heap and always accessed via
an object reference. Reference types do not derive from System.ValueType.

Value type: a .NET type that is stored on the stack or inside the values of other
types. Value types derive from System.ValueType. A value of a value type
can be boxed in order to obtain a reference to (a copy of) the value.

3.1.2 Scope limitations

Comfortingly, a complete understanding of the intricacies of .NET and C# is
not required for this work. Many aspects of .NET are irrelevant because our
goal only involves accessing .NET libraries, and not creating new .NET libraries.
Some noteworthy features of .NET and C# that can be overlooked include:

Type and member visibility Only public types and public members of such
types are visible when accessing a .NET library through the bridge. As
such, modifiers pertaining to visibility (‘public’, ‘protected’, ‘private’ and
‘internal’) are not covered within.

Structures The bridge marshals all non-primitive values (such as C# structs)
by reference because Haskell cannot, in general, directly access the data
contained in these values. From the point of view of bridge’s type system,
structs can thus be treated as classes.

Static constructors In contrast to instance constructors, static constructors
cannot be called by the programmer and do not affect the bridge.

Some other features have been removed purely to simplify the exposition, these
include:

• Array types

• Unsigned primitive types

• Reference and output parameters
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3.2 Type systems and inference rules

Some chapters of this thesis formally specify select parts of the .NET type system
and the bridge implementation. This includes defining subtyping relations and
certain sets (of types). Inference rules are used to describe these relations and
sets. In order to make this thesis self-contained, the concept of inference rules
are explained below. (For a thorough treatment of the theory of type systems,
refer to Pierce [23]).

An inference rule, such as the following:

p1 p2 p3

c

states that if all the logical statements above the line (the premises p1, p2 and p3)
hold, then one can infer that the logical statement below the line (the conclusion
c) also holds. If there are no statements above the line, the conclusion always
holds (it is an axiom).

Collections of inference rules are used to define sets and relations. The set or
relation defined by the collection of inference rules is the smallest set that contains
every element that can be derived from the inference rules (starting with the
axioms).

As an example, consider the following two inference rules that define the set of
natural numbers, ‘nat’:

0 nat
(Zero) n nat

s(n) nat
(Succ)

The axiom (Zero) states that ‘0’ is a natural number (i.e. a member of ‘nat’).
The rule (Succ) states that if you have a natural number n, then the successor
of that number, s(n), is also a natural number.

In the case of the typing rules discussed in this thesis, we typically wish to devise
an algorithm that can deterministically decide if a particular element is in the
particular set or relation. Here the rules serve as a concise and accurate notation
for specifying what the algorithm is to achieve.
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3.3 Type families

Haskell’s type classes support the ad-hoc overloading of functions, or equivalently,
the definition of type-indexed functions. This allows a single function name to be
associated with any number of definitions, with the appropriate definition being
selected based on one (or more1) of the types involved in the function application.

Type families [1, 26] extend this overloading support into the realm of types
by providing the ability to define type-indexed types (for both data types and
type synonyms). There are three ways of defining type-indexed types with type
families:

Associated data types A data type defined in a type class, with definitions
given by instances of the type class.

Associated type synonyms A type synonym defined in a type class, with def-
initions given by instances of the type class.

Stand-alone type functions A type synonym defined at the top-level (using
the family keyword), whose definitions are given by top-level type instance
declarations.

Type-level computation

Associated type synonyms and stand-alone type functions pave the way for per-
forming computations at the level of types in Haskell. Type functions, in par-
ticular, provide a convenient syntax for defining these type level computations;
and make the definition of type level functions look much like the pattern-based
definitions of standard Haskell functions.

The rest of this section defines some primitive type functions for performing
type-level computations, which are built on later in this thesis. For clarity, and
to avoid name clashes, type functions defined solely for performing type-level
computations are prefixed with the letter ‘T’.

Performing computation at the type-level in Haskell is not new. Prior to the
existence of type families, functional dependencies [9] have been used to perform
such computations. The basic definitions for type-level booleans, logic operations,
and lists that follow are also defined in Kiselyov, Lämmel and Schupke’s work on
HList [14], for example.

1This feature requires the multi-parameter type classes extension.

12



Type-level booleans

In Listing 3.1, we define constructor-less data types to represent the boolean
values of true and false; these are the type-level boolean literals. Type-level
boolean logic functions can be defined in terms of these type-level booleans.
Listing 3.2 defines short-circuited conjunction, disjunction and negation at the
type-level. Finally we define a type-level conditional, for making decisions based
on the type-level boolean values, in Listing 3.3.

Type-level lists

Type-level list processing is used extensively in Chapter 8. We define constructs
for building type-level lists in Listing 3.4. A constructor-less data type TNil rep-
resents the empty list, while the infix type constructor :::2 is our list constructor
(cons). The listing also contains a fixity declaration for ::: so lists can be written
without extraneous parentheses.

By default, only a restricted form of type function definition is allowed in order
to ensure that type-checking will terminate. Many interesting type-level compu-
tations however cannot, in general, be proven to terminate. In order to support
these computations we instruct the compiler to relax termination checking3.

2Use of infix type constructors requires the type operators extension.
3In the Glasgow Haskell Compiler, this option is called ‘allow undecidable instances’.
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data TTrue
data TFalse

Listing 3.1: Type-level boolean literals

type family TAnd x y
type instance TAnd TFalse x = TFalse
type instance TAnd TTrue x = x

type family TOr x y
type instance TOr TTrue x = TTrue
type instance TOr TFalse x = x

type family TNot x
type instance TNot TTrue = TFalse
type instance TNot TFalse = TTrue

Listing 3.2: Type-level boolean logic functions

type family TIf c a b
type instance TIf TTrue a b = a
type instance TIf TFalse a b = b

Listing 3.3: Type-level conditional function

data TNil
data x ::: xs
infixr 5 :::

Listing 3.4: Type-level list construction
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4

Bridges for Interoperability

Haskell and .NET are worlds apart. This is why a software bridge is required
to provide interoperability between them in the first place. Bridging the two
systems is difficult for two main reasons:

1. Both Haskell and .NET have their own runtime systems that perform tasks
such as memory management and threading. By design these runtime sys-
tems only manage their own code and data. Sharing code and data between
them requires extra effort.

2. There is a mismatch between Haskell’s concepts and the object-oriented
concepts of .NET. This is manifested clearly in their different type systems,
and how they assign types to data and code. Encoding .NET concepts in
Haskell in a natural way, and vice versa, is difficult.

This leads to the two core tasks that the software bridge must perform: runtime
system interoperation; and type and object system mapping. The sections below
expand on these tasks.

4.1 Runtime system interoperability

Providing the required infrastructure so that the .NET execution engine and the
Haskell runtime system can interoperate is the core low-level task that must be
addressed by the bridge implementation. There are a number of issues involved
in carrying out this task:

Hosting To attain the required level of interoperability, the respective runtime
systems must be loaded into the same process. In the case of our bridge,
either the Haskell program can load the .NET execution engine into its
process, or vice versa.
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Memory and reference management Both .NET and Haskell use a garbage
collected memory management scheme. A mechanism is required to prevent
references to objects in the foreign runtime from being prematurely garbage
collected.

Data marshaling Haskell and .NET store their data in different memory lo-
cations and using different formats. Where data must be copied from one
runtime to the other, a mechanism is required to convert the data into an
acceptable format for the receiver.

Transfer of control Calling a .NET method from Haskell, or a Haskell function
from .NET, requires transferring the thread of control from one runtime to
the other.

Threading .NET allows the use of multiple operating system threads and Haskell
allows both lightweight and operating system threads to be used. Con-
sequently, each runtime must be re-entrant, and the bridge must handle
concurrent access to any of its global data structures.

Techniques for dealing with many of these issues are described in various inter-
operability papers [6, 7, 16, 18]. Notably, Haskell’s excellent Foreign Function
Interface (FFI) allows for relatively elegant and straightforward solutions to some
of these issues. By applying existing interoperability techniques, the Haskell FFI,
and the appropriate .NET APIs, the issues outlined above can be solved by careful
programming.

4.2 Type and object system mapping

Runtime system interoperation is sufficient for a bridge in the same way that a
Turing machine is sufficient for arbitrary computation; however Haskell and .NET
have high-level concepts that we would like to maintain (as much as possible)
when using the bridge. A type and object system mapping between Haskell and
.NET allows us to do this by exposing .NET concepts in Haskell and Haskell
concepts in .NET. Such a mapping is designed to satisfy the goals of usability (it
must feel natural to the programmer) and convenience (it should be automatic).

The features of Haskell’s type system and those of object-oriented systems (like
.NET) are known to not play well together. This is evident in the number of
papers covering the topic, and implies that creating a type and object system
mapping that satisfies the goals of the bridge is a worthwhile challenge.
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Since accessing .NET libraries from Haskell is the focus of this work, we will
concentrate on mapping .NET concepts into Haskell. There are a number of
difficulties involved with this:

• Subtyping

• Method overloading

• Namespaces

• Generics

These difficulties are described in more detail below.

4.2.1 Subtyping

The classes in .NET, as in most object-oriented languages and systems, form
an inheritance hierarchy. A particular .NET class can only derive from one
superclass (single, implementation inheritance) but can implement any number
of interfaces (multiple, interface inheritance). A subtyping relation is formed over
the types of classes and interfaces: one class or interface is a subtype of another
if it derives or implements the other (either directly or indirectly).

Haskell has no concept of subtyping. This poses a difficulty to exposing .NET
libraries in Haskell. These libraries are designed with subtyping in mind, and, for
example, expect the caller to be able to pass any subtype of the type of a formal
argument, for the actual argument. At the very least, a way of coercing types
up and down the hierarchy from Haskell is necessary. Without implicit coercions
on method calls however, the resulting code will contain a number of superfluous
casts, and look unnatural.

4.2.2 Method overloading

A single method name may be associated with different underlying method imple-
mentations in .NET, with the underlying implementation being resolved statically
by the compiler. The different implementations for a method can be found in
different classes or even in the same class. In the former case, the target of the
method call is used to determine the class that contains the method, while the
types of the method’s arguments are used to resolve the method in the latter
case.
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The process of resolving a method call to the appropriate method implementation
is controlled by a set of rules in the compiler. The C# Language Specification [4,
Section 14.4.2] includes a number of sections stating the rules of “overload reso-
lution” in C#. The presence of subtyping makes these rules rather complicated.

In order to call .NET methods with overloaded names, in a natural way, from
Haskell, a system of resolving the appropriate method is required. Pang and
Chakravarty [21] describe a method of resolving overloading using Haskell’s type
system (in particular, multi-parameter type classes with functional dependen-
cies). Other methods include using mangled method names, or resolving the
overloading at runtime instead (provided the required static typing information
is available).

4.2.3 Namespaces

Nested namespaces are supported by .NET and used extensively in its libraries.
Explicit namespaces can be created, but classes and structures are also (implic-
itly) namespaces. Any kind of type definition, such as a class declaration or
enumerated type, can be made in a namespace. This implies that classes can be
nested inside each other (although this usage is not encouraged for the external
interfaces of .NET libraries).

Haskell includes a simple module system, which allows for hierarchically named
modules, but ultimately functions and types end up being imported into a flat
namespace.

Without some support for namespaces in the bridge, Haskell programs will need
to use fully qualified names for .NET classes, methods and other items. The
resulting code would be unnatural to read and to write, so some solution to the
problem must be provided by the bridge.

4.2.4 Generics

With version 2.0 of the .NET framework, Microsoft added support for parametric
polymorphism (generics) to the .NET runtime and languages. Both .NET types
and .NET methods can be parameterised by one or more types (refer to Kennedy
and Syme [12] for details).

Much of the research on Haskell interoperating with object-oriented systems was
performed before generics support was introduced into the mainstream object-
oriented frameworks (Java and .NET). Consequently, little research has been
conducted on the mapping of object-oriented generic types into Haskell.
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5

Related Work

In this section, existing solutions to the challenge of interoperating with .NET
from Haskell are examined, along with other systems that solve a similar problem,
and papers that cover relevant research areas.

5.1 Existing solutions

There are not many runtime bridges between Haskell and .NET. The most promi-
nent, and useful, of these bridges is Hugs98 for .NET, which we will examine here.
Another runtime bridge, called GHC.NET is part of the Glorious Haskell Com-
piler (GHC) but it is, at the time of writing, suffering from bit-rot.

5.1.1 Hugs98 for .NET

Hugs [10] is an interpreter for Haskell, written in C, by Mark P. Jones. It was
later extended by Sigbjorne Finne, to create Hugs98 for .NET [5]. The extended
version provides support for interoperating with the .NET framework. Unfortu-
nately, no papers could be found that describe Hugs98 for .NET, so the following
information was obtained by perusing the Hugs98 documentation and source
code.

The interoperability provided by Hugs98 for .NET is mostly unidirectional, al-
lowing access to .NET from Haskell. There are two ways to access .NET: by
declaring foreign imports (using the ‘dotnet’ calling conversion); or by calling
functions provided in the ‘Dotnet’ module. Both allow access to .NET class
members, including: invoking methods and constructors; and getting and setting
the values of fields and properties.

There is experimental support for accessing Haskell from .NET. This is done by
wrapping Haskell functions as .NET delegates (or as .NET classes) dynamically.
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Since this occurs at run-time it is not possible for external .NET code, such as a
C# program, to compile against such classes; they can only use them at run-time.

Implementation details

In order to interact with the .NET framework and its runtime engine, Hugs98
for .NET uses Microsoft’s Managed Extensions for C++. Managed Extensions
for C++1 is an extension to C++, implemented by the Microsoft Visual C++
compiler, that allows native code to interoperate easily with managed (i.e. .NET)
code. The entire Hugs code base, including the Hugs98-for-.NET extensions,
is compiled with this compiler to produce Hugs98 for .NET. The result is a
mixed-mode executable (one containing both native and managed code) that
automatically uses the CLR to execute its (managed) code.

Requests to access .NET from Haskell code (either via foreign imports, or via the
Dotnet module) result in calls to a handful of primitive functions implemented
in C++. These functions unmarshal Hugs values to their C equivalents (as nec-
essary), and then use methods in the .NET reflection library (System.Reflection)
to perform the desired .NET operations. The C++ compiler makes this possible
(the .NET methods are accessible directly from the C++ code).

The experimental support for calling Haskell functions from .NET (via delegates
and dynamically generated classes) is implemented in a C++ class. This class is
compiled and linked into the mixed-mode Hugs executable and then accessed via
the bridge itself. The class uses Reflection.Emit (a library in .NET for generating
CIL code dynamically) in order to construct .NET delegates/classes that wrap
Haskell functions. These delegates/classes ultimately call functions defined in
the Hugs runtime to invoke the desired Haskell functions. Again the C++ com-
piler makes this possible (the native functions in the Hugs runtime are directly
accessible from the .NET class).

Mapping details

All references to .NET objects are represented in Hugs98 for .NET using the
Object a abstract data type. This data type accepts an unused type parameter,
allowing the use of phantom types [7] to encode .NET subtyping (with some
limitations). Values of the Object type along with any other types that are
members of the NetType type class are allowed to be passed to, and returned
from, .NET calls. Beyond this, the Hugs extension does not attempt to map

1Managed Extensions for C++ is superseded by C++/CLI.
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.NET types into Haskell. This job is left to the wrapper generator (hswrapgen).

The wrapper generator uses .NET reflection to generate a Haskell module (.hs
file) that includes the foreign import declarations and data type declarations
that are required to use a particular .NET class. It produces an empty data type
declaration (with a phantom type parameter) and a type synonym (indicating
that it is a subtype of its parent class) for the class:

data DateTime a
type DateTime a = ValueType (DateTime a)

(which indicates that the .NET class DateTime is a subtype of ValueType)

It also produces foreign import declarations for all of the constructors, methods
(including property get and set methods) and fields. No special syntax is provided
for accessing properties (unlike C#). For example, the read-only Month property
of the DateTime class is accessed directly via its get method:

foreign import dotnet "method System.DateTime.get_Month"

get Month :: DateTime obj → IO Int

The generator appends a numeric suffix to any function names that are required
more than once. This occurs when a method or constructor is overloaded.

Limitations

Some of the limitations of Hugs98 for .NET are outlined below:

Basic type mapping The type mapping performed by the wrapper generator
has a number of limitations that make foreign libraries inconvenient to use
from Haskell:

• The names of overloaded methods are mangled (suffixed with a num-
ber) which makes writing the code difficult.

• Names common to more than one class must be resolved through the
Haskell module system, thus littering the code with qualified names.

• Interfaces are not included in the subtyping hierarchy due to the use
of phantom types (which only support single inheritance).

These limitations ultimately make the resulting code unnatural to deal with,
both for Haskell and .NET programmers.
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No support for .NET 2.0 The bridge operates only with versions 1.0 and 1.1
of the .NET framework. This rules out access to a large number of .NET
libraries, including the latest .NET 3.02 libraries. There are significant
differences between .NET 1.0/1.1 and .NET 2.0, principally due to the
introduction of generics (parametric polymorphism) in the latter.

Implementation portability The bridge works only on a specially compiled
version of the Hugs interpreter, and then only on Microsoft Windows.

Platform portability The use of Managed Extensions for C++ to implement
the bridge means that the .NET runtime must support mixed-mode exe-
cutables. Mono does not support these (and, to my knowledge, there are
no plans to add support for them).

Limited bidirectional bridge support Even when a bridge is focused on in-
teroperability in a particular direction (from Haskell to .NET, for example),
sufficient support must be provided in the other direction to support call-
back functions. Hugs98 for .NET supports exposing Haskell functions to
.NET in the form of EventHandler3-typed delegates. This works well for
Windows Forms 1.0 (an early GUI library for .NET), but it is not suffi-
ciently general to support all library call-backs. Ideally, any Haskell func-
tion having a matching .NET delegate type should be able to be exposed
to .NET.

Efficiency The bridge uses a reflection technique that is particularly slow when
making calls into .NET. The InvokeMember method of the .NET Type class
used by Hugs98 for .NET is the “slowest of the late-bound invocation mech-
anisms” [24]. Since Hugs itself is not a performance-focused implementation
of Haskell, in context this issue is minor.

Some of these limitations, such as the use of Managed Extensions for C++ are
inherent in the design and implementation of the bridge. So modifying Hugs98
for .NET to resolve these limitations is not a feasible option.

2The (confusingly named) .NET Framework 3.0 is a collection of .NET libraries that run on

top of version 2.0 of the .NET Framework.
3An EventHandler delegate represents method of the form:

void f (object sender ,EventArgs e).
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5.2 Other systems

In this section we examine other systems that deal with interoperability, either
with Haskell, or with .NET. None of the systems described here aim to solve the
same problem as this thesis, but the problems that they do solve are nonetheless
relevant to this work.

5.2.1 MochΛ

André Pang’s thesis [20] and the associated paper Interfacing Haskell with Object-
Oriented Languages by Pang and Chakravarty [21] both describe a general system
for interoperability between Haskell and object-oriented component systems. The
work builds on Lambada [18] and the techniques described by Shields and Peyton
Jones [28]. From here on we will only refer to the paper, but everything discussed
applies to the thesis as well. The work makes three main contributions:

• A system for dealing with object-oriented method overloading in Haskell,
that makes use of multi-parameter type classes and functional dependencies.

• Using compile-time meta-programming in Haskell (Template Haskell) and
reflection to automatically generate interface bindings for an external li-
brary without using external tools.

• A Haskell to Objective-C [8] binding called Mocha that applies the above
contributions in a real bridge implementation.

Pedagogically, the work is similar to this thesis. Both are concerned with getting
Haskell to interoperate with an external object-oriented system in a convenient
and natural way. The main difference between the two is the foreign system
being interoperated with. Although Pang’s research describes a relatively general
object-oriented mapping, the implementation (MochΛ), ultimately interoperates
with Objective-C as opposed to .NET.

There are some significant differences between Objective-C and .NET that affect
the way a bridge to Haskell would be implemented (with respect to both runtime
system interoperability and type mapping). These differences are summarised in
Figure 5.1.

Since this thesis is explicitly focused on .NET, the type and object system map-
ping effort is tailored specifically to .NET rather than object-oriented component
systems in general. This means that .NET concepts like delegates, properties and
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Objective-C .NET
Object interaction Dynamic message Static class-based

passing method calling
Memory management Reference counted Garbage collected
Nested namespaces Not supported Supported (and used

extensively)

Figure 5.1: Comparing Objective-C and .NET

enumerated types will have a ‘first class’ status in the mapping and will be more
natural to use in Haskell than they would otherwise be.

Despite the differences between the paper and this thesis, it is clear that the
contributions of the paper are relevant here. We will now examine how Pang and
Chakravarty deal with mapping subtyping and method overloading into Haskell.
Both of these are highlighted, in §4.2 as challenges that must be addressed by
the bridge.

Mapping subtyping

This section outlines the subtype mapping system that is described in the paper.
For each object-oriented class, a Haskell data type and type class is created. For
example, if we have a Shape and a Circle class, we get:

data Shape
class SubShape a

data Circle
class SubCircle a

Then for each class, instances are declared in the type classes that correspond to
its class or superclasses. Continuing our previous example, if Circle is a subclass
of Shape, we get:

instance SubShape Shape
instance SubShape Circle
instance SubCircle Circle

The type classes can then be used in the context of type expressions for objects
(class instances). Continuing our example, (SubShape a ⇒ a) is the type associ-
ated with the Shape class (or one of its descendants) and (SubCircle a ⇒ a) is
the type associated with the Circle class (or one of its descendants).
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Mapping overloaded methods

The issue of method overloading is addressed in the paper by using multi-parameter
type classes and functional dependencies. A number of variations are covered; a
simplified version of one such variation is described here.

For each unique method name define a type class and a function. For example,
if we have a Console class, with an overloaded method called Write, we get:

class Write target arguments result | target arguments → result

write :: (Write target arguments result)⇒
target → arguments → result

write = ...

Notice that the type class accepts three parameters: one for the type of the
target object, one for the type of a tuple holding the method’s arguments, and
one for the result type. Also notice that a functional dependency, indicating that
the type of the result is functionally dependent on the type of the target and
arguments, is included in the class definition.

Then for each overloaded version of the method, define a corresponding instance
of the type class. Assuming that there are two versions of Write in the Console

class, one taking an Integer, the other a Bool, then we have:

instance Write Console Integer (IO ())
instance Write Console Bool (IO ())

The write function can now be used to call either of the overloaded Write methods
in the Console class.

Unfortunately this system breaks down when subtyping and method overloading
are combined. Wolfgang Thaller [30] discovered this problem while attempting
to use Mocha’s type mapping system in HOC (another Haskell to Objective-C
bridge). The problem is exhibited when methods from two unrelated classes
have the same name and argument types. For example, if a Console class and
an Author class have a Write method accepting a string, the mapping gives the
following instances:

instance (SubConsole target)⇒Write target String (IO ())
instance (SubAuthor target)⇒Write target String (IO ())
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Notice that, due to the use of subtyping, the target object type has moved from
the head of the instance declaration to the context. Since the compiler only looks
at the head of the instances when matching them:

instance Write target String (IO ())
instance Write target String (IO ())

it has no way of telling them apart, and raises a compilation error.

Conclusion

The work of Pang’s thesis and the associated paper serve as a basis for the work
in this thesis, especially with respect to the type and object system mapping.
Overcoming the limitations of the work, and determining how to incorporate
namespaces and other .NET concepts into it, constitutes much of the research
undertaken herein.

5.2.2 Lambada

Lambada [18] is a runtime bridge, created by Meijer and Finne, that provides
interoperability between Haskell and Java.

The approaches to runtime system interoperability taken by Lambada and by
Salsa are similar. Both make use of Haskell’s FFI to communicate with the foreign
runtime system, and both operate as a Haskell library that does not require any
special language extensions. Obviously the two bridges differ significantly with
respect to the foreign runtime being interoperated with (despite the similarities
between Java and .NET, each have different ways of interoperating with their
runtime systems).

For the type mapping Lambada uses a hybrid approach to deal with subtyping.
Phantom types are used to encode Java’s class hierarchy, while type classes are
used to represent Java interfaces. Lambada does not attempt to deal with the
other challenges outlined in §4.2 (method overloading, namespaces and generics).

Lambada employs a tool called H/Direct to generate the Haskell bindings for
Java classes. This works in a rather indirect way, requiring the Java classes first
be described in Interface Description Language (IDL) before being converted into
Haskell code by H/Direct.
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5.2.3 F#

F# is an OCaml-inspired variant of ML that compiles to .NET CIL and runs
directly on the .NET platform. It was written by Don Syme at Microsoft Re-
search, and continues to be developed there. The F# website [25] describes it as a
multi-paradigm language, since it naturally supports the imperative, functional,
and object-oriented programming styles. Of particular relevance to this thesis
is that F# is a functional language, with type inference, that happens to have
excellent bidirectional interoperability with .NET.

Since the interoperability technique being applied in this thesis (runtime bridging)
and that of F# (compilation) are very different, it would be unrealistic to expect
the bridge to have the same level of .NET interoperability as F#. However as a
standard to strive for, and as an example of how to adapt a functional language
to fit the .NET mould, F# is certainly worthy of study.

Although F# is based on the OCaml language, it does not aim to be an OCaml im-
plementation and there are significant syntactic and semantic differences between
the two. These differences, according to the F# website, arise “from essentially
unavoidable changes for the design of a .NET language.” Since making signifi-
cant changes to the Haskell language is prohibited by the goals of this project,
therein lays a significant challenge. How can we maximise ease of interoperability
between Haskell and .NET without significantly changing the language?

We will now examine some of the areas where F# differs from OCaml. The main
differences are in the following areas:

Subtyping Whether one type is a subtype of another can be defined explicitly
using their names (nominal subtyping) or implicitly in the structure of the
types involved (structural subtyping). OCaml uses structural subtyping
(like many other languages in the research community), while .NET employs
nominal subtyping (which is typical of most object-oriented languages and
systems). Since Haskell does not have subtyping at all, the choice for the
bridge is either to model a form of subtyping in Haskell, or have the bridge
absorb it (using dynamic checks) and hide .NET’s subtyping altogether from
the Haskell side (or perhaps something in between these two extremes).

Functors The concept of parameterised modules (functors) is not present in
either .NET or Haskell, so F#’s lack of functors does not concern us.

F#, like Haskell, uses type inference to free the programmer from annotating
every expression with a type. The algorithm used for type inference in F# plays
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are large role in making .NET libraries naturally accessible from F# (outward in-
teroperability). In particular, it attacks the problem arising from mixing method
overloading and subtyping (described in §4.2.2) by:

• Implicitly coercing (narrowing) the type of actual arguments to the formal
argument types. This allows subtypes of the actual argument types to be
passed to methods.

• Requiring explicit type annotations on the arguments of some calls to over-
loaded methods. This is necessary to resolve the overloading when it is
ambiguous.

• Using a complicated set of rules to deal with overload resolution.

5.3 Relevant papers

In this section we describe two noteworthy papers that are relevant to the type
and object system mapping aspect of this work.

5.3.1 Object-oriented style overloading for Haskell

The premise of the paper Object-Oriented Style Overloading for Haskell [28],
by Shields and Peyton Jones, is the desire to use object-oriented libraries, like
those of .NET and Java, from Haskell. It focuses not on the technical aspects of
such interoperability, but on mapping the type systems of these object-oriented
systems into Haskell’s type system. It is one of the seminal papers in this area.

The paper describes a number of alternative solutions to the challenge of subtyp-
ing, they include:

1. Using phantom types

2. Mapping each class to a type class

3. Mapping each class to a data type and then encoding subtype relationships
with type classes

4. “full-blown subtype constraints” [28]

Only the last alternative requires changes to Haskell’s type system. Shields and
Peyton Jones conclude that the third alternative is sufficient (this is the same
technique that MochΛ employs to deal with subtyping, as described in §5.2.1).
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The other challenges, method overloading and namespaces, are addressed by
providing a way to overload method names in Haskell. By overloading across the
target class of the method, the namespace issue is resolved; and by overloading
across the argument types of a method, the method overloading issue is resolved.
The authors note that this resembles the multi-methods of the Common Lisp
Object System (CLOS).

To allow for the method name overloading, Shields and Peyton Jones make use
of overlapped instances, as well as two extensions to the type system: method
constraints and closed classes. Unfortunately, neither of these extensions are
implemented in Hugs or GHC today.

5.3.2 Haskell’s overlooked object system

To date, Haskell’s overlooked object system [13] is almost certainly the most com-
prehensive paper on object-oriented programming in Haskell. In contrast to the
other papers reviewed in this thesis, the work described in this paper is not at all
concerned with interoperability. Instead it focuses on applying object-oriented
programming techniques directly (and exclusively) in Haskell. It goes beyond
exposing an external object-oriented interface inside Haskell and instead imple-
ments the underlying object-oriented machinery for stateful objects, inheritance,
and subtyping, in Haskell.

A large portion of the paper describes the OOHaskell library. By using this
library (with Haskell 98, multi-parameter type classes, and functional dependen-
cies) a Haskell programmer can apply object-oriented idioms to their Haskell
programs.

The obvious question is: can we use OOHaskell to expose .NET concepts in
Haskell? Each .NET class could be exposed in Haskell as an OOHaskell class.
The methods and fields of these classes would, via the bridge, proxy those of
the underlying .NET class. This sounds like a promising approach to the type
and object system mapping problem, but there are a number of reasons why it
is unsuitable:

Coverage Some important mapping problems are not addressed. OOHaskell

implements core object-oriented concepts like object state, inheritance and
subtyping, but it does not address some of the more difficult challenges
associated with bridging to object-oriented systems. The method overload-
ing and namespace problems identified in Chapter 4, are not addressed
by OOHaskell. Since .NET uses both of these concepts extensively, this
makes direct use of OOHaskell impracticable.
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Redundancy Both OOHaskell and the .NET framework prescribe a certain
object-oriented semantics. In the case of OOHaskell, the semantics is
configurable and would have to precisely match .NET’s semantics (a prob-
lematic task).

Complexity OOHaskell employs type-level programming in almost every as-
pect of its implementation. The resulting complexity of such extensive
type-level programming is undesirable.

Heavyweight The OOHaskell library is not the sort of lightweight solution we
are seeking for the bridge.

Even though the direct use of OOHaskell is not suitable for us, the paper itself
is valuable. It comprehensively describes and assesses a range of techniques for
encoding object-oriented class hierarchies in Haskell 98. Some variation or com-
bination of these techniques, or the techniques used to create OOHaskell, may
lead to an appropriate type and object system mapping for the bridge.
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6

Salsa

During the course of the work on this thesis, a software bridge was developed
that allows Haskell and .NET programs to interoperate. This bridge is called
Salsa, and it serves two purposes:

• It satisfies the original goal of the thesis, stated in Chapter 2, of building a
software bridge between Haskell and .NET.

• It provides a concrete realisation of the research results, in particular the
work on overcoming the challenges involved in mapping the .NET type and
object system into Haskell (as outlined in §4.2).

This chapter gives an overview of the design and implementation of Salsa, includ-
ing how it addresses the challenges involved in runtime system interoperability,
and type and object system mapping.

6.1 Design

A number of design decisions were made as part of building the bridge. The
following statements describe the important aspects of the resulting design.

• The bridge must enable an existing Haskell runtime system (of a supported
Haskell implementation) and the .NET execution engine to interoperate.
This rules out any modification of the runtime systems to support the in-
teroperation, and makes the bridge lightweight.

• Focus on providing convenient .NET access from Haskell, allowing access
to Haskell from .NET only as necessary for using libraries. This restricts
the scope of the bridge somewhat, leaving full bidirectional interoperability
as future work.
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• Implement the bridge core as a Haskell library, built on top of the Haskell
C FFI. This makes the runtime system interoperation component of the
bridge independent of any particular Haskell implementation.

• Have the Haskell executable host the .NET execution engine. Given the
focus of accessing .NET from Haskell, hosting .NET in Haskell is the most
appropriate hosting arrangement.

• Employ .NET reflection to automatically import .NET libraries for the
bridge. This feature helps satisfy the goal of convenience.

• Support version 2.0 of the .NET framework.

Limitations of the design

The design points described in the previous section lead to some limitations for
the bridge. They include:

Limited bidirectional interoperability Users who wish to embed Haskell in
.NET applications, or require access to Haskell beyond what is required to
use typical .NET libraries, will not find the bridge appropriate for their
needs.

Efficiency Calling from Haskell into .NET, and from .NET into Haskell entails
the unavoidable overhead of leaving one runtime and entering the other.
Making inter-runtime calls in tight loops is not expected to give good per-
formance.

6.2 Implementation

The Salsa implementation can be split into three main parts: a Haskell library,
a .NET assembly, and a binding generator program.

6.2.1 Haskell library

As stated in the design section, Salsa provides .NET interoperability to Haskell
programs through an ordinary Haskell library. This library provides the Haskell-
side infrastructure for interacting with .NET, including functions for creating
objects, invoking methods, and accessing properties. It also includes a type-
level implementation of an overload resolution algorithm and implicit conversion
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algorithm to support convenient and type-safe object-oriented overloading and
subtyping in the bridge.

The declarations in the modules of Salsa’s Haskell library work together with the
Haskell modules generated by the binding generator to provide access to specific
.NET classes and their members from Haskell.

The library also contains code that loads the .NET execution engine into the
process and allows .NET code in the driver assembly to be executed. This is
implemented using the Haskell Foreign Function Interface (FFI) and a very thin
wrapper for Microsoft’s Component Object Model (COM).

6.2.2 .NET driver assembly

Salsa includes a .NET assembly called the driver assembly. This assembly pro-
vides the requisite support for the bridge on the .NET side, which includes the
following functions:

Entry point Haskell programs using Salsa enter .NET initially via an entry
point method in the driver assembly. This entry point provides access to
function pointers for obtaining stub functions that can call arbitrary .NET
code.

Stub generation Salsa provides arbitrary access to .NET by way of dynami-
cally generated stub functions that can be called from Haskell via function
pointers. The driver assembly includes .NET code that generates these stub
functions on demand for specific operations, such as: invoking a particular
constructor, or creating a .NET delegate instance that will call a Haskell
function when invoked.

Object reference management The driver assembly maintains a collection of
the .NET object instances that are currently being referred to from Haskell
code. This collection is known as the ‘in table’.

6.2.3 Binding generator

Salsa requires Haskell modules to be generated from the .NET metadata in order
to provide access to the desired .NET libraries. A binding generator, written in
C#, is provided for this purpose. The generator produces a number of Haskell
modules containing type class instances, type function definitions, and foreign
import declarations as appropriate for binding to the indicated .NET libraries.

33



Note: Salsa’s Haskell library and .NET driver assembly are not generated. The
generated Haskell modules are in addition to these core components.

6.3 Addressing the challenges

The following sections outline the techniques that are employed in Salsa to solve
the challenges outlined in Chapter 4.

6.3.1 Runtime system interoperability

The challenges involved in getting the Haskell runtime system and .NET exe-
cution engine to interoperate, as outlined in §4.1, are broad rather than deep.
Solving the problems is mostly a matter of careful coding, dealing with the .NET
interoperability services and the Haskell FFI. The following points outline specif-
ically how the challenges are addressed in Salsa.

Hosting Salsa uses the Haskell FFI to access the COM interface for the .NET
execution engine (via a thin COM wrapper). This is used to load the
execution engine into the Haskell process and call the entry-point method
in the driver assembly.

Memory and reference management References to .NET objects are stored
in Haskell as an Int32 value and a ForeignPtr. The integer is a key into the
in-table maintained by the driver assembly. The in-table prevents .NET
objects from being garbage collected prematurely, and allows objects to be
marshaled by integer key (which avoids having to pin foreign-referenced
.NET objects). The foreign pointer has a concurrent finaliser attached,
which calls into .NET to inform the driver assembly when the object is no
longer referenced from Haskell code.

Data marshaling The Haskell FFI and .NET marshaling systems are used by
Salsa to handle most of the low-level data marshaling tasks. A small set of
primitive types are marshaled by value using C types (which are supported
by both systems). All other types, including other .NET value types, are
marshaled by reference (i.e. as keys of the in-table).

Transfer of control The initial transfer of control from Haskell to .NET occurs
through the driver assembly entry-point. All other inter-runtime transfers
of control are triggered by either: calling a function pointer to a .NET
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delegate (for transferring from Haskell to .NET), or by calling a .NET
delegate to a function pointer (for transferring from .NET to Haskell).

Threading Salsa uses a global lock to synchronise access to the in-table. The
Haskell runtime that is used must support threading because of the .NET
garbage collector, which calls finalisers on a different thread.

Since the interesting results pertain to the type and object system mapping,
rather than runtime system interoperability, the remainder of this chapter —
and this thesis — concentrates on the mapping aspects of Salsa.

6.3.2 Type and object system mapping

Subtyping The challenge of providing .NET-style subtyping in Haskell is ad-
dressed by:

• Applying type-function based implicit conversions on property assign-
ments, method arguments and constructor arguments; combined with
a type-class based implementation of coercion semantics for subtyping.
Refer to §8.4 for details.

• Duplicating the bindings for inherited members in descendant classes.

Neither nested phantom types (used in Lambada [18], see §5.2.2) or type
class hierarchies (used in MochΛ [20], see §5.2.1) are used to handle sub-
typing in Salsa. Chapter 8 contains a comprehensive explanation of Salsa’s
approach.

Method overloading The challenge of providing access to .NET-style over-
loaded methods in Haskell is addressed by:

• Incorporating a type-level overload resolution algorithm into the bind-
ings to resolve overloaded method invocations at compile time, and to
perform any required implicit conversions.

• Using a type class for dispatching method invocations to the appropri-
ate implementation, combined with an associated type synonym to fix
the method result type. A version of this technique is used in MochΛ,
except using functional dependencies instead of associated type syn-
onyms.

• Using tuple types to represent method arguments and method signa-
tures (as in MochΛ).
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Chapter 8 contains a comprehensive explanation of this new approach to
object-oriented method overloading. It also covers the related approach to
subtyping that is used in Salsa.

Namespaces The challenge of appropriately exposing .NET namespaces in Haskell
is addressed on a number of fronts:

• The implicit namespace that .NET wraps around every type declara-
tion is addressed by using first-class labels (like those used in HList [14]
and OOHaskell [13]) for naming .NET members. By using labels, a
single name can be given many meanings depending on the context in
which it is used.

• .NET’s explicit namespaces are handled by exporting all of the Haskell
proxy types, that represent the .NET types of a particular namespace,
into a particular Haskell module. The module is then given a hierar-
chical name that corresponds to the .NET namespace whose types it
contains.

• Nested types, which are rarely seen in the interfaces of .NET libraries,
are handled using a simple name-mangling scheme. The scheme is
similar to .NET’s internal naming system for nested types.
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7

Mapping Types and Members with Labels

There are a number of .NET features that the bridge must to expose to the
Haskell programmer in order to provide interoperability. .NET types, methods,
properties; all of these need to have some representation in Haskell, and this
representation should allow the features to be used in much the same way as a
programmer of a typical .NET language would. Ideally they should look similar
(syntax), behave similarly (semantics), and be — as much as possible — type-
safe. All these attributes are important for Salsa given the goals of usability and
safety.

This chapter describes the basic Haskell infrastructure that Salsa provides, and
the patterns it follows, for exposing .NET types and their members in Haskell.
The ubiquitous use of labels to do this is a worthwhile contribution, and leads to
a very natural syntax for using .NET in Haskell.

7.1 Labels

The concept of a label, being a named language construct that represents itself
and nothing more, is a designed-in feature of many languages. Lisp’s atomic
symbols [17, §1.1] are an early example of this feature. In Haskell, labels typically
take the form of a singleton type:

data FatFree = FatFree

This declares a data type FatFree and a single constructor FatFree (which is
the only non-bottom value for the type); and together these make a label. This
idea is not new; it is seen frequently in the implementations of record systems
for Haskell. Kiselyov, Lämmel and Schupke’s work on HList [14] is a notable
example.
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Salsa’s ubiquitous use of labels, for the purpose of exposing foreign entities in
Haskell, is unlike previous Haskell bridges and bindings. Labels are employed
not only for representing .NET types but also for naming the members of these
types. The benefits of using labels in this way include:

Natural syntax Since labels consist of identically named type and data con-
structors, they can be used both on the value-level and on the type-level.
This is useful for providing a natural syntax to the bridge, for example: the
.NET type Button can be represented on the type-level with the type Obj

Button and its .NET instance constructor can be named on the value-level
with the data constructor Button.

Context sensitivity Haskell’s type classes allow a single label to be interpreted
in different ways by making the label type an instance of different type
classes. This allows names to be overloaded in a convenient fashion.

Type-level programming Algorithms implemented at the type-level, such as
those implemented with type functions (see §3.3), manipulate types instead
of values. Labels can thus be directly processed by type-level programs.

7.2 Mapping types

The section outlines how Salsa represents .NET types in Haskell.

7.2.1 Primitive types

For the bridge to be useful, some .NET types must be represented in Haskell as
standard Haskell types. Without this, all data entering Haskell from .NET would
be opaque and Haskell would be unable to interpret it. In Salsa, the types that
are represented as standard Haskell types are called primitive types.

Table 7.1 lists the .NET types that are considered to be primitive in Salsa, along
with the associated Haskell type. Figure 7.1 defines the set ‘prim’ that contains
the Haskell type representations of the primitive types.

Primitive types are always marshaled by value. Salsa marshals values of these
.NET types to the corresponding Haskell types when accepting data from .NET,
and vice versa when passing data to .NET.

Note: for usability Salsa treat strings as primitive types and marshals them by
value, even though System.String is actually a reference type in .NET. This is
safe because .NET strings are immutable.
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.NET type Haskell type
System.Int32 Int32
System.String String
System.Boolean Bool
System.Double Double

Table 7.1: Mapping of primitive types

Int32 prim String prim Bool prim

Double prim

Figure 7.1: Salsa primitive types

7.2.2 Reference types

Any .NET type that is not considered by the bridge to be a primitive type is
treated as a reference type. This includes .NET classes, interfaces, and even value
types (which are boxed into .NET references as necessary). Reference types are
opaque to the Haskell program and can be directly manipulated only by .NET.
They are marshaled as the integer keys of the bridge driver’s in-table.

Reference types are represented in Haskell with the type Obj a, which has the
following definition:

data Obj a = Obj ObjectId (ForeignPtr ())
| ObjNull

Salsa declares a label for every .NET type that is bound. This label’s type is
applied to the phantom type parameter a to obtain the Haskell type represen-
tation of a .NET type. For example, the .NET type Object is represented in
Haskell as the type Obj Object. This technique is commonly used in Haskell
bridges [5, 18, 21], and it ensures that foreign references cannot be accidentally
substituted for one another, even though all such references have the same rep-
resentation at the value level.

There are two constructors for Obj values: Obj and ObjNull. Obj stores the
integer key that corresponds to the real .NET object in the bridge driver’s in-
table. It also stores a ForeignPtr, to which a finaliser (which removes the object
from the in-table when called) is attached. All non-null .NET object references
use the Obj constructor; null references, which do not require finalisation, are
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τ class/interface label

Obj τ ref

Figure 7.2: Salsa reference types

instead represented with ObjNull.

As an optimisation, Salsa actually uses strict fields in the Obj constructor.

Figure 7.2 defines the set ‘ref’ containing the Haskell type representations of the
bridge reference types.

7.3 Mapping members

The section outlines how Salsa represents the members of .NET types in Haskell,
including: methods, constructors, properties, fields and events.

7.3.1 Methods

Salsa provides support for invoking the static and instance methods of .NET
types, and it makes use of labels in order to do this. A label is declared for
every unique method name that is made accessible from Haskell, and the data
constructor for the label is directly employed in the syntax for invoking a method.

Invoking a method can be performed in Salsa using the invoke function shown
in Listing 7.1; it takes three arguments:

1. The target of the method invocation. For instance methods, this argument
must be a value of the appropriate object type (Obj a), and the value iden-
tifies the particular object on which the method will be invoked. For static
methods, the argument must be the constructor for the label identifying
the class in which the method to invoke is contained.

In both cases, the type of the target is used to identify which class the
method to be invoked is a member of.

2. The name of the method to invoke. The argument must be the constructor
for the label associated with the method to be invoked.

3. A tuple of arguments for the method invocation.
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invoke t m args = rawInvoke t m args

class Invoker t m args where
type Result t m args
rawInvoke :: t → m → args → Result t m args

Listing 7.1: Method invocation support

For example, to invoke the instance method ToString of an object, one can write:

invoke object1 ToString ()

And to invoke the static method WriteLine of the Console class, one can write:

invoke Console WriteLine ("Salsa")

The technique, of using labels to identify methods, is similar to part of the MochΛ
implementation which uses this idea when dealing with overloaded methods.
However MochΛ (and other Haskell bindings and bridges), ultimately provide
a unique Haskell function for invoking each bound method. This differs from
Salsa’s approach, where method labels are exposed as part of the syntax for
invoking methods (Salsa’s invoke function is called directly by the Haskell pro-
grammer).

By directly exposing labels in this way, and not defining a Haskell function for
each method in each .NET type, Salsa is able to use method names in a context
sensitive manner. For example, consider the following .NET classes:

public class TennisPlayer
{

public void Serve() {· · ·} // (A)
}

public class Waiter
{

public void Serve() {· · ·} // (B)
}

Given a variable t of type Obj TennisPlayer and w of type Obj Waiter, the Serve

method can be called like so:

invoke t Serve () -- invokes (A)
invoke w Serve () -- invokes (B)
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Notice that the same label, Serve, refers to (A) in the context of a TennisPlayer

object, and (B) in the context of a Waiter object, just like a method name in a
C# program would. The Invoker type class, shown in Listing 7.1, is used to
determine which method is intended by the programmer.

Constraining the result type

In addition to selecting the intended target method, Invoker constrains the result
type of method invocations in order to avoid superfluous type annotations.

Pang and Chakravarty [21] describe a technique for constraining the result type
of object-oriented method invocations using functional dependencies [9]. Salsa
employs the same technique but using associated type synonyms [2] instead. As
Listing 7.1 shows, the associated type synonym Result in Invoker directly con-
strains the result type of the rawInvoke function.

It is interesting to note that, in .NET, the result type of a method depends not
only on the target type and the method name, but also on the argument types.
This is the case because it is possible to have two methods of the same name,
invocable through the same class, that have different result types1. The situation
arises when a method is overloaded, and an overload with a different signature
and result type is defined in the parent type. For example:

public class C
{

public Int32 M (Boolean b) {· · ·} // (A)
}

public class D : C
{

public String M (Double d) {· · ·} // (B)
}

The method M can be invoked on an object of type D in two ways:

• with a boolean argument, yielding an Int32 value, or

• with a double argument, yielding a String value.
1There does not need to be any relationship (subtype or otherwise) between the two result

types.
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x # f = f x

Listing 7.2: Reverse application operator

This possibility is handled cleanly in Salsa by including the argument signature
tuple as one of the type arguments to the associated type synonym, Result.

Note: The actual implementation of invoke and Invoker in Salsa is more com-
plicated than that of Listing 7.1 due to Salsa’s support for overload resolution
and implicit conversion (which is described in Chapter 8).

Improving the syntax

There is a common trick for improving the syntax of object-oriented method in-
vocations in Haskell. This trick involves using an operator that performs function
application with the arguments flipped. It was first described by Peyton Jones,
Meijer and Leijen [22] in their work on binding COM components in Haskell.

They define #, the reverse function application operator, as shown in Listing 7.2,
and define f so that it accepts the target of the invocation as its last argument.
Unfortunately, this technique is incompatible with our direct use of labels. Our
f is always a label constructor, not a function that can be used to directly invoke
a method, and there is little that can be done to resolve this because function
application has the highest precedence in Haskell. The expression:

button1 # Click ()

is always interpreted as:

button1 # (Click ())

which fails since Click is a nullary data constructor.

In order to support this very convenient syntax, Salsa defines a function for
every label. This function calls invoke partially applied with the label’s data
constructor. In the case of the Click label, Salsa defines the function Click:

Click args t = invoke t Click args

This allows the original syntax to be used, with the caveat that the method
name be prefixed with an underscore (giving the function rather than the data
constructor):

button1 # Click ()
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Note that despite the use of a function to identify the method to invoke, this
technique retains the original benefits of using labels. The Click function is
only associated with the Click label, and not the Click member of the Button class
(or any other class).

7.3.2 Constructors

Salsa supports the invocation of instance constructors to create instances of .NET
objects. Internally, instance constructors are treated as static methods with the
label Ctor2:

data Ctor = Ctor

Externally however, Salsa provides a natural, C#-like syntax. This syntax takes
the form of a new function, which is simply a wrapper around the invoke func-
tion partially applied with the Ctor method label:

new t args = invoke t Ctor args

As with all static methods bound by Salsa, the argument for the target of the
invocation must be the constructor for a label; where the label is associated
with the type containing the member to be invoked. In the case of an instance
constructor, this is the type being instantiated. The resulting syntax is very
similar to that of C#:

button1 ← new Button ()

Note: Static (or class) constructors are not bound by Salsa. Such constructors
cannot be invoked by any .NET language (the runtime invokes them automati-
cally).

7.3.3 Fields, properties and events

Support for reading and writing fields, getting and setting properties, and adding
and removing events, is provided in Salsa through its attribute system. This
system provides a convenient syntax for reading, writing and updating such val-
ues. It was inspired by the attribute systems of other Haskell bindings including
Gtk2Hs [29], wxHaskell [15] and hs-fltk [11].

2This is analogous to .NET’s internal treatment of instance constructors as static methods

with the name ‘.ctor’.
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The Salsa system differs from the other systems in a number of ways, including:

• Use of labels to identify attribute names. Just as Salsa uses labels to iden-
tify method names, Salsa uses labels to identify the attribute names corre-
sponding to .NET fields, properties and events. This differs from the other
attribute systems which use functions instead of labels for this purpose.

• Support for adding and removing event listeners. Earlier attribute systems
provide only read/write style access, which does not fit the model of .NET
events where adding and removing events both behave like write operations.

• Support for implicit conversions when assigning to properties and fields.
Refer to §8.4 for more information of Salsa’s implicit conversion implemen-
tation.

As with Salsa’s method implementation, the use of labels in the attribute system
allows the names of .NET fields, properties and events to overlap with other
names that are bound by Salsa from the .NET libraries.
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8

Overloading and Subtyping with Type Functions

8.1 Introduction

This chapter presents a novel solution to the problem of encoding object-oriented
overloading and subtyping in Haskell (extended with type families [1, 26]). The
technique is employed in Salsa to expose .NET libraries — that make extensive
use of both method overloading and subtyping — in Haskell. In addition, access
to the libraries is type-safe and does not require superfluous type annotations.

Previous work (see Chapter 5) offers solutions to this problem that are type-safe,
and avoid superfluous type annotations, but do not allow the simultaneous use
of method overloading and subtyping [20, 21]. Methods whose signatures differ
on types where one is a subtype of the other, cannot be encoded.

Unfortunately, some commonly used methods in the .NET framework are over-
loaded in this way. Take the Write method from the Console class, for example:

public static class Console

{
public void Write(String s) {· · ·} // (A)
// ...

public void Write(Object o) {· · ·} // (B)
}

Here String is a subtype of Object. If Write is called with an argument of type
String, which method should be called: (A) or (B)? A String is an acceptable
argument for both methods.

The C# overload resolution algorithm, which is executed at compile-time by the
C# compiler to resolve such method invocations, gives us the answer: the String
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overload is chosen because the conversion String → String is better than String →
Object (where better than is a relation defined in the C# specification).

Unsurprisingly, while C# compilers implement the C# overload resolution algo-
rithm, Haskell compilers do not. However, we know (from §3.3) that arbitrary
computations can be expressed at the type-level using type functions (in Haskell
compilers that support them). Can this be exploited so that the Haskell com-
piler resolves overloaded method invocations as it type checks the program? The
following sections show that this is not only possible, but also that the resulting
solution is rather elegant.

In addition to resolving overloading at compile time, a related technique is de-
scribed to perform implicit conversions (based on the subtype relation). This is
used in Salsa to support subtyping where overload resolution does not apply, such
as when assigning a value (of type τ1) to a variable (of type τ2 where τ1 <: τ2).

8.2 Type equality

Before we can implement a type-level algorithm that deals with .NET types,
we need a way of comparing .NET types for equality. More precisely, we need
a type-level binary predicate function TyEq that returns a type-level boolean
indicating if the given .NET types are equal or not:

type family TyEq τ1 τ2

According to Shields [27], C# is nominally typed with the exception of (the
structurally typed) arrays and unsafe pointer types. For the purposes of the
bridge we define two types to be equal if they have the same assembly-qualified
name.1

Since the Salsa bindings provide a unique Haskell label (or a unique Haskell type
in the case of a primitive type) for every .NET type encoded by the bridge, we
can define .NET type equality, in the Haskell type-system, as a relation over
Haskell types.

The equality constraints feature, introduced with type families, allows us to ex-
press the requirement that two types be the same in the context of a function,
class or instance declaration. This sounds like a promising way of defining the
type equality predicate, but unfortunately it is not enough. We require a type
function that returns true if the types are equal, and false otherwise; equality

1A type’s assembly-qualified name includes the full name of the type, including any names-

pace, in addition to the name and version of the assembly in which it is defined.

47



constraints cannot give us this. For example, take the following definition of
TyEq:

type instance TyEq (τ1 ∼ τ2)⇒ τ1 τ2 = TTrue -- WRONG
type instance TyEq τ1 τ2 = TFalse -- WRONG

This definition is not permitted because the heads of the two instance declarations
are overlapping (τ1 ≡ τ1 ∧ τ2 ≡ τ2), while the bodies are distinct (TTrue 6≡
TFalse). Type instance definitions are not allowed to overlap unless their bodies
are syntactically identical.

For the same reason, the following (longer) definition is also not a solution:

type instance TyEq String String = TTrue
type instance TyEq Int32 Int32 = TTrue
· · ·
type instance TyEq τ1 τ2 = TFalse -- WRONG

The only remaining option for a direct implementation of TyEq requires an
instance declaration for every possible pair of types over which the type equality
relation is defined. Each such definition would indicate if the types are equal
(TTrue) or not (TFalse). Given the size of the .NET framework libraries, a type
function implementation that requires O(n2) instance declarations is simply not
feasible for the bridge. (Even with a code generator producing the instances, it
is simply too much data to expect a Haskell compiler to process.)

A solution to this dilemma, and the solution implemented in Salsa, is to associate
a Gödel number with each type and then define TyEq using equality over the
Gödel numbers. This reduces the number of instance declarations from O(n2) to
O(n).

We represent Gödel numbers as type-level lists of booleans2. Given the definitions
for type-level lists and booleans from §3.3, Listing 8.1 defines type-level equality
for booleans (BoolEq) and lists (ListEq).

The Gödel numbering scheme is defined by the type function TyCode, shown
in Listing 8.2, which returns a unique type-level list of booleans for the given
type. Implementing TyEq is then just a matter of comparing the lists returned
by TyCode for the given types, as shown in Listing 8.3. The listing also defines

2Peano numerals could have been used instead of boolean lists. However, definitions for

booleans and lists are required elsewhere in the implementation so reusing them here makes

sense. The lists also require less type-level evaluation by the compiler, since they have a nesting

depth of O(log n) rather than O(n).
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type family BoolEq x y
type instance BoolEq TTrue TTrue = TTrue
type instance BoolEq TFalse TFalse = TTrue
type instance BoolEq TFalse TTrue = TFalse
type instance BoolEq TTrue TFalse = TFalse

type family ListEq xs ys
type instance ListEq TNil TNil = TTrue
type instance ListEq (x ::: xs) TNil = TFalse
type instance ListEq TNil (x ::: xs) = TFalse
type instance ListEq (x ::: xs) (y ::: ys) = TAnd (BoolEq x y) (ListEq xs ys)

Listing 8.1: Type-level equality for booleans and lists

type family TyCode τ
type instance TyCode Int32 = TFalse ::: TNil
type instance TyCode String = TTrue ::: TNil
type instance TyCode (Obj Object) = TTrue ::: TFalse ::: TNil
· · ·

Listing 8.2: Gödel numbering for types

type family TyEq τ1 τ2
type instance TyEq τ1 τ2 = ListEq (TyCode τ1) (TyCode τ2)

type family TyListEq m n
type instance TyListEq TNil TNil = TTrue
type instance TyListEq TNil (n ::: ns) = TFalse
type instance TyListEq (m ::: ms) TNil = TFalse
type instance TyListEq (m ::: ms) (n ::: ns) = TAnd (TyEq m n)

(TyListEq ms ns)

Listing 8.3: Type-level type equality and type list equality
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τ1 = τ2

τ1 <: τ2
τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

class C : C ′ ++ I {· · · }
C <: C ′ (C-Basea)

class C : C ′ ++ I {· · · }
C <: Ii

(C-Imp)

interface I : I ′ {· · · }
I <: I ′

i

aIf a class has no base class, C′ is object.

Figure 8.1: Subtyping rules for C# (based on [27])

TyListEq which compares lists of types for equality. This function is useful for
dealing with method signatures represented as a list of the types of the method
arguments.

8.3 Encoding subtyping

In addition to comparing types for equality, our type-level algorithm must be able
to determine if a particular .NET type is a subtype of another. In this section
we develop a type function, IsSubtypeOf, that implements this predicate.

Subtyping is present in .NET (and in the C# language) through two related
mechanisms:

Single inheritance of classes. Every class (with the exception of the base Ob-

ject type) derives from exactly one class. If an explicit base class is not
provided, Object is assumed.

Multiple inheritance of interfaces. Each class/interface implements zero or
more interfaces.

The reflexive, transitive closure of the derives from and implements relations form
the subtype relation (<:) defined in Figure 8.1 (these subtyping rules are based
on work by Shields [27]). We define this relation for every .NET type, including
.NET value types which, with the exception of primitive types, are always boxed
as reference types when passed through the bridge.

We implement IsSubtypeOf in terms of another type function, SupertypesOf,
which returns a list of the supertypes of a particular class as defined by the
subtype relation. Formally:

SupertypesOf τ = {τ ′ | τ <: τ ′}
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Listing 8.4 shows the implementation of IsSubtypeOf, SupertypesOf and the
helper function TyElem (which evaluates to true if and only if the given type is
in the given list).

In Salsa, the list of supertypes for a class is calculated by the code generator
and inserted into the source (as a constant type-level list in the appropriate
SupertypesOf type instance) when the bindings for the class are generated.
An alternative would be to calculate the list of supertypes during type checking
based on more primitive relations (such as derives from and implements).

The implementation of IsSubtypeOf is reasonably efficient because the list of
supertypes that it searches is typically short.

type family SupertypesOf τ
type instance SupertypesOf (Obj Object) = TNil
type instance SupertypesOf (Obj Button) = (Obj Object) ::: TNil

type family TyElem τ1 ts
type instance TyElem τ1 TNil = TFalse
type instance TyElem τ1 (t ::: ts) = TOr (TyEq τ1 t) (TyElem τ1 ts)

type family IsSubtypeOf τ1 τ2
type instance IsSubtypeOf τ1 τ2 = TOr (TyEq τ1 τ2)

(TyElem τ2 (SupertypesOf τ1))

Listing 8.4: Type-level subtype predicate

8.4 Implicit conversions

When invoking a method or assigning a value to a variable (and in some other
situations [4, §13.1]), the C# compiler will automatically apply implicit conver-
sions to convert a value of one type to another (compatible) type. Assigning a
value of type Int32 to a field of type Double, for example, will cause the compiler
to automatically convert the Int32 value to a Double value.

If an implicit conversion exists from one type to another, the required conversion
(if any) will always succeed at run-time. This is why the compiler can insert
them automatically (and hence why they have the name ‘implicit’).

Without a system that performs these implicit conversions where necessary, the
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source code is polluted with seemingly superfluous type casts and is, consequently,
less readable. In case of the bridge, this must be avoided to satisfy the goal of
usability.

This section defines an appropriate implicit conversion relation for the bridge,
implements it as a type function, and then demonstrates how the type function
is employed to perform an implicit conversion for a hypothetical Haskell function
that assigns a value to a .NET field.

8.4.1 Definition

The C# specification [4] defines the set of valid implicit conversions in §13.1,
however the set is inappropriate for the bridge for a number of reasons, including:

• The rules do not deal with the primitive bridge types (described in §7.2.1).
We need additional rules to ensure that the primitive bridge types behave
like the corresponding .NET types would in C#.

• There are many rules in the C# specification that do not apply in the
context of the bridge and can be removed for simplicity. These rules relate
to value types (which are never seen by the Haskell side of the bridge) and
features that the bridge does not support (like user-defined conversions).

Figure 8.2 gives a set of inference rules for the implicit conversion relation that
is employed by Salsa. These rules define the relation τ1  τ2 which holds if and
only if a type τ1 is implicitly convertible to τ2. The types involved are Haskell
types (which include the proxy types representing .NET types in Haskell). The
relation must be defined on Haskell types because the conversions are applied by
the Haskell compiler and need to include the primitive bridge types like Int32.

The rules cover the following types of conversions:

Identity A value of a type can, trivially, be converted to the same type (C-Id).
This corresponds to C#’s identity conversion.

Subtyping If τ1 is a subtype of τ2, we allow converting from τ1 to τ2 (C-

Subtype). This corresponds to C#’s implicit reference conversions.

Numeric conversions Only one of C#’s implicit numeric conversions, Int32  

Double, applies to the types exposed by the bridge (C-Num1).

Null literal The null literal has a special type which can be implicitly converted
to any reference type (C-Null).
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Boxing We automatically box primitive types into a .NET Object instance (C-

Box) if needed. This is similar to C#’s implicit boxing conversions for
value types.

8.4.2 Implementation

The type function ConvertsTo, shown in Listing 8.5, defines the implicit con-
version predicate ( ). It returns a type-level boolean indicating if the first type
can be implicitly converted to the second.

The function is implemented as a sequence of boolean disjunctions, one for each of
the five inference rules from Figure 8.2. It makes use of many of the type functions
defined earlier, along with IsPrim and IsRef, which indicate if a given type is a
member of, respectively, the ‘prim’ or ‘ref’ sets defined in §7.2. Listing 8.6 shows
the implementation of these functions.

type family ConvertsTo τ1 τ2
type instance ConvertsTo τ1 τ2 =

(TOr (TyEq τ1 τ2) (C-Id)
(TOr (TAnd (IsPrim τ1) (TyEq τ2 (Obj Object))) (C-Box)
(TOr (TAnd (TyEq τ1 Int32 ) (TyEq τ2 Double)) (C-Num1)
(TOr (TAnd (TyEq τ1 (Obj Null)) (IsRef τ2)) (C-Null)

(TAnd (TAnd (IsRef τ1) (IsRef τ2)) (C-Subtype)
(IsSubtypeOf τ1 τ2))))))

Listing 8.5: Type-level implicit conversion predicate

type family IsPrim τ

type instance IsPrim Int32 = TTrue
type instance IsPrim String = TTrue
type instance IsPrim Bool = TTrue
type instance IsPrim Double = TTrue
type instance IsPrim (Obj τ) = TFalse

type family IsRef τ
type instance IsRef τ = TNot (IsPrim τ)

Listing 8.6: Type-level ‘prim’ and ‘ref’ predicates
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We now have all the required machinery to determine, at compile time, if a
particular type can be implicitly converted into another type. This is great, but
we need more. In addition to being able to determine if an implicit conversion
is allowed, we must actually perform these conversions where they are required.

Since .NET employs subset semantics for reference types, a conversion from one
reference type (Obj a) to another (Obj b) does not require a conversion at run-
time. We do however need to inform the Haskell type system that the value has
been subsumed to a different type. We use the Haskell function unsafeCoerce
to do this.

The use of unsafeCoerce in this context is perfectly safe because the type pa-
rameter of Obj is a phantom type parameter. The type is not used in the definition
of any of Obj’s constructors, and thus they all have the same representation and
can be safely coerced.

For value types, .NET employs coercion semantics for subtyping. Since some of
the bridge’s primitive types represent .NET value types (Int32, Bool and Double),
the bridge must explicitly convert between these values.

The following list describes the types of conversions that can arise, and the re-
quired semantics for each:

Reference Obj a  Obj b is coerced using unsafeCoerce.

Numeric widening Int32  Double is coerced with fromIntegral.

Identity τ  τ does not require any coercion to be performed.

Boxing τ  Obj τ (where τ ∈ prim) is coerced with a boxing conversion func-
tion. This requires a call into .NET to obtain a reference to a boxed copy
of the value.

We use a type class Coercible to encapsulate these conversions, and allow dis-
patching to the appropriate conversion operation based on the types of the values
involved. Listing 8.7 shows the implementation of Coercible.

In contrast to ConvertsTo, which defines what conversions are allowed to be
performed implicitly, the class Coercible operates at a lower level; it defines the
conversions that are possible (but not necessarily implicitly performed) between
types of possibly different representations. For example, coerce will perform
the nonsense conversion from a value of type Obj Button to a value of type Obj

Console, even though there is no meaningful relationship between the two class
types.
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τ  τ
(C-Id)

τ1 ref τ2 ref τ1 <: τ2
τ1  τ2

(C-Subtype)

Obj Null type of the null literal τ ref

Obj Null τ
(C-Null)

τ prim

τ  Obj Object
(C-Box) Int32 Double

(C-Num1)

Figure 8.2: Rules for implicit conversions

class Coercible from to where
coerce :: from → to

instance Coercible Int32 Int32 where coerce = id
instance Coercible String String where coerce = id
instance Coercible Bool Bool where coerce = id
instance Coercible Double Double where coerce = id
instance Coercible Int32 Double where coerce = fromIntegral
instance Coercible (Obj f ) (Obj t) where coerce = unsafeCoerce
...

Listing 8.7: Coercible class to coerce values
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8.4.3 Application

As an example of supporting implicit conversions using the implementation de-
scribed in the previous section, we bind the following static .NET field in Haskell.

public static Double x ;

We would like to be able to assign values to this field using a Haskell function
setX that accepts a new value for the field and returns an IO action that performs
the assignment. Something like this:

setX :: Double → IO ()
setX = · · ·

Except that the above implementation can only be supplied with values that
are exactly of the type Double. In order to accept values of any type that can
be implicitly converted to Double, we implement setX like so, employing the
ConvertTo type function and Coercible type class:

setX :: (ConvertsTo v Double ∼ TTrue,
Coercible v Double)⇒
v → IO ()

setX v = rawSetX (coerce v)

rawSetX :: Double → IO ()
rawSetX = · · ·

Here setX will accept any type that can be implicitly converted to a Double.
It uses coerce to perform the required coercion (if any) on the actual value
that is passed in, before passing the value (which is now a Double) to rawSetX.
rawSetX then performs the low-level task of assigning the value to the .NET
field.

Of particular importance is setX’s type signature; it states that the argument
type v must be:

1. implicitly convertible to a Double according to ( ):
ConvertsTo v Double ∼ TTrue

as well as,

2. (explicitly) coercible to a Double:
Coercible v Double
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The first constraint can be viewed as the entry point to the type-level implicit-
conversion checking algorithm. It ‘calls’ the type function ConvertsTo with the
appropriate arguments, and then uses an equality constraint to ensure that it
evaluates to true.

The second constraint simply ensures that the required Coercible instance ex-
ists so that coerce can be called. (The required instance will exist if the first
constraint is satisfied.)

Salsa uses the above technique in its property system in order to support assigning
values to .NET properties and fields. It also plays a role in Salsa’s support for in-
voking overloaded methods and constructors (which perform implicit conversions
on their arguments if required).

8.5 Overload resolution

When compiling a method or a constructor invocation (and in some other situ-
ations [4, §14.4.2]), the C# compiler often has a choice to make. For example,
.NET allows a class to provide several implementations of a particular method, all
with the same name, and the compiler has to (statically) select which particular
implementation should be invoked.

A set of method implementations sharing a name is called a method group. If
there is more than one method in a group, the method is said to be overloaded.
.NET requires that the signatures of the methods in a method group differ (where
a signature is roughly the list of argument types), therefore a method name and
signature is enough to uniquely identify a particular method in a class.

When a method is invoked, the compiler’s overload resolution algorithm is used
to choose the appropriate implementation to invoke, based on:

• the static type of the class on which the method was invoked;

• the name of the method (group); and

• a list of the static types of the arguments that have been supplied to the
method invocation.

Like the C# compiler, the bridge has to perform overload resolution for method
and constructor invocations. In the following sections we define an appropriate
overload algorithm for the bridge, and then implement it such that the Haskell
compiler performs the resolution when it type checks the program.
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8.5.1 Definition

We base the overload resolution algorithm in Salsa on the C# overload resolution
algorithm which is defined in §14.4.2 of the C# specification [4]. Consider a
method invocation:

o.M (a1, a2, ..., an);

The algorithm would perform the following tasks in order to resolve it:

1. Enumerate the list of candidate methods for the invocation. This includes
all methods named M in the (static) class of the object instance o, as well
as any such methods in any superclass, unless a superclass method is hidden
by a method in a derived class with the same signature.3

2. Filter the candidate methods, leaving only methods that are applicable
given the argument list (a). A method is applicable only if it has the
same number of formal parameters as the invocation has arguments, and
there is an implicit conversion from each argument type to the respective
formal parameter type of the candidate method. (App)

3. Find the best method from the remaining candidate methods. Intuitively,
a candidate method is better than another candidate method if the respec-
tive argument types are more ‘easily’ converted to the method’s parameter
types. More precisely, a method M is better than another method N , in
the context of a given argument list if (M-Better):

• There is some argument where the conversion from the argument type
to the corresponding parameter type inM is better than the conversion
from the argument type to the respective parameter type in N , and

• No conversion from an argument type to the respective parameter type
in N is better than the respective conversion for M.

Where a conversion from τ to τ1 (C1) is said to be better than a conversion
from τ to τ2 (C2) if either of the following applies:

• C1 is the identity conversion (τ → τ) and C2 is not. (C-Better1)

• There is a non-identity conversion from τ1 to τ2. (C-Better2)
3This behaviour is known as ‘hide by name-and-signature’ semantics. .NET also supports

‘hide-by-name’ semantics, where a single method hides all methods of the same name in the

base class. C# uses ‘hide by name-and-signature’ semantics, as does Salsa.
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|a| = |m| ∀ai  mi

a ` m app
(App)

Figure 8.3: Rule for applicable candidate methods

τ 6= τ2

τ  τ >c τ  τ2
(C-Better1)

τ1  τ2 τ2 6= τ1

τ  τ1 >c τ  τ2
(C-Better2)

Figure 8.4: Rules for comparing conversions

4. If a single best method was found in the previous step, choose that method,
otherwise indicate that a compile time error has occurred.

A similar sequence of steps are performed for constructor invocations (which are
called using C#’s new operator).

Since step 1 can be performed prior to the compilation, it is performed by Salsa’s
code generator and the process is not covered further in this section.

The remaining steps (2–4) must be performed at compile time4 because they
depend on the types of the arguments supplied to the method invocation.

8.5.2 Value-level implementation

Having defined the overload resolution algorithm, we are now ready to implement
it. Since the algorithm’s implementation is non-trivial, we examine an equivalent
value-level Haskell implementation before covering Salsa’s type-function-based
implementation. The value-level implementation is much clearer due to the use

4Confusingly, compile-time for the Haskell program is run-time for the resolution algorithm.

∃i. ai  si >c ai  ti
∀i. ai  ti 6>c ai  si

a ` s >m t
(M-Better)

Figure 8.5: Rules for comparing methods under an applicable invocation
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of higher-order functions (which have to be manually specialised in the type
function implementation).

The overload resolution algorithm is implemented by the function resolve shown
in Listing 8.8. This function takes:

• a list of candidate members (ms) corresponding to the methods of a par-
ticular method group,

• a list of argument types (as) from the call being resolved,

and returns the best applicable member from ms with respect to as. This is the
member which should be invoked for the particular invocation. If there is no
unique best applicable member, resolve fails.

resolve :: [Member ]→ [Type ]→ Member
resolve ms as = m

where apps = filter (isApp as) ms
[m ] = filter (isBestMember as) apps

isApp as m = (length as ≡ length m) ∧
and (zipWith ( ) as m)

isBestMember as m = all (isBetterMember as m)
(filter ( 6≡ m) apps)

Listing 8.8: Value-level overload resolution algorithm

The resolve function performs step 2 of the resolution algorithm by filtering the
list of candidate methods on the function isApp. The function isApp imple-
ments the (App) rule from Figure 8.3, evaluating to true if and only if the given
member is applicable with respect to the argument list.

Step 3 of the resolution algorithm is performed by filtering the list of applicable
function members with isBestMember to select only the best members, i.e.
methods that are better than all the other applicable candidate methods. An
application of isBestMember as m evaluates to true if and only if m is better
than all other members in ms, with respect to the argument types as.

Listing 8.9 shows the implementation of isBetterMember and a helper function
isBetterConv. These functions correspond, respectively, to the >c and >m

relations of Figure 8.4 and Figure 8.5.
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isBetterConv :: Type → Type → Type → Bool
isBetterConv τ τ1 τ2 = (τ ≡ τ1 ∧ ¬ (τ ≡ τ2)) ∨

(τ1  τ2 ∧ ¬ (τ2  τ1))

isBetterMember :: [Type ]→ Member → Member → Bool
isBetterMember as m1 m2 = someBetter s t ∧

¬ (someBetter m2 m1)
where someBetter m1 m2 = or (zipWith3 isBetterConv as m1 m2)

Listing 8.9: Value-level >c (better conversion) and >m (better member) predicates

8.5.3 Type-level implementation

This section presents a type-level implementation of the value-level overload res-
olution algorithm described previously. Listing 8.10 shows the type-level imple-
mentation of resolve (previously from Listing 8.8), and Listing 8.11 shows the
implementations of the >c and >m predicates (previously from Listing 8.9).

Many of the type functions defined in earlier sections are used in the implemen-
tation, including the predicate for implicit conversions, ConvertsTo.

In the type-level implementation, the value-level Type and Member types, become
real Haskell types and type-level lists of these types, respectively.

Tuples and lists

Type-level lists (of types) are convenient for implementing type-level algorithms
because they allow the use of list recursion (which is used extensively in the
overload resolution algorithm).

Isomorphic to type-level lists are tuple types, which also represent a sequences of
types. Using tuple types for the bridge bindings is desirable because they provide
a concise and natural looking syntax for constructs like method and constructor
invocations.

In order to have the benefits of both type-level lists and tuples, we define two
helper functions, TupleToList and ListToTuple, for converting between tuple
types and type-level lists (of types). Listing 8.12 shows their definitions. Note
that the definition for TupleToList requires the 1-tuples to be defined for every
bridge type to prevent overlapping with the other instances.

Listing 8.13 shows an updated implementation of Resolve that accepts and
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type family Resolve as ms
type instance Resolve as ms =

FromSingleton (FilterBestMembers as (FilterApp as ms)
(FilterApp as ms))

type family FromSingleton xs
type instance FromSingleton (x ::: TNil) = x

type family FilterApp as ms
type instance FilterApp as TNil = TNil
type instance FilterApp as (m ::: ms) =

TIf (IsApp as m) (m ::: FilterApp as ms)
(FilterApp as ms)

type family IsApp as ss
type instance IsApp TNil TNil = TTrue
type instance IsApp TNil (s ::: ss) = TFalse -- different lengths
type instance IsApp (a ::: as) TNil = TFalse -- different lengths
type instance IsApp (a ::: as) (s ::: ss) = TAnd (ConvertsTo a s)

(IsApp as ss)

type family FilterBestMembers as ms ns
type instance FilterBestMembers as ms TNil = TNil
type instance FilterBestMembers as ms (n ::: ns) =

TIf (IsBestMember as ms n) (n ::: (FilterBestMembers as ms ns))
(FilterBestMembers as ms ns)

type family IsBestMember as ms n
type instance IsBestMember as TNil n = TTrue
type instance IsBestMember as (m ::: ms) n =

TIf (TyListEq m n) (IsBestMember as ms n)
(TAnd (IsBetterMember as n m)

(IsBestMember as ms n))

Listing 8.10: Type-level overload resolution algorithm
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type family IsBetterConv τ τ1 τ2
type instance IsBetterConv τ τ1 τ2 =

TOr (TAnd (TyEq τ τ1) (TNot (TyEq τ τ2))) (C-Better1)
(TAnd (ConvertsTo τ1 τ2) (TNot (ConvertsTo τ2 τ1))) (C-Better2)

type family AnyBetterConv as ss ts
type instance AnyBetterConv TNil TNil TNil = TFalse
type instance AnyBetterConv (a ::: as) (s ::: ss) (t ::: ts) =

TOr (IsBetterConv a s t) (AnyBetterConv as ss ts)

type family IsBetterMember as ss ts
type instance IsBetterMember as ss ts =

TAnd (AnyBetterConv as ps qs) (HNot (AnyBetterConv as qs ps))

Listing 8.11: Type-level >c (better conversion) and >m (better member) predicates

type family TupleToList t
type instance TupleToList () = TNil
type instance TupleToList Int32 = Int32 ::: TNil
type instance TupleToList String = String ::: TNil
type instance TupleToList Bool = Bool ::: TNil
type instance TupleToList Double = Double ::: TNil
type instance TupleToList (Obj x ) = Obj x ::: TNil
type instance TupleToList (a, b) = a ::: b ::: TNil
type instance TupleToList (a, b, c) = a ::: b ::: c ::: TNil
· · ·

type family ListToTuple t
type instance ListToTuple TNil = ()
type instance ListToTuple (a ::: TNil) = a
type instance ListToTuple (a ::: b ::: TNil) = (a, b)
type instance ListToTuple (a ::: b ::: c ::: TNil) = (a, b, c)
· · ·

Listing 8.12: TupleToList and ListToTuple type functions
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produces tuples instead of type-level lists. In this code, TupleToList is used
to convert the tuple of argument types (as) to a list for the overload resolution
algorithm, which ultimately returns a list of types that is converted back to a
tuple with ListToTuple. All of this happens at the type level; the tuple, of type
as, containing the argument values is not converted to a list.

type family Resolve as ms
type instance Resolve as ms =

ListToTuple (FromSingleton
(FilterBestMembers (TupleToList as)

(FilterApp (TupleToList as) ms)
(FilterApp (TupleToList as) ms)))

Listing 8.13: Tuple-supporting Resolve type function

Coercing arguments

Since overload resolution takes subtyping into account when resolving a function
member, it is possible that the argument types returned by Resolve differ from
the argument types that were provided. As with implicit conversions, we need
to perform coercions on these argument values before invoking the method. We
extend the Coercible type class defined in §8.4.2 to safely coerce tuples of values,
instances for 0 and 2-tuples are shown in Listing 8.14.

instance Coercible () () where
coerce = id

instance (Coercible f1 t1,Coercible f2 t2)⇒ Coercible (f1, f2) (t1, t2) where
coerce (f1, f2) = (coerce f1, coerce f2)

...

Listing 8.14: Extending Coercible to coerce tuples

8.5.4 Application

As with the implementation of implicit conversions, having an algorithm at the
type-level is not enough. We need to connect the type-level overload resolution
algorithm to the functions that are used to invoke methods and constructors. We
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show how this can be done in the context of a hypothetical method invocation.
Take the following .NET class containing a single overloaded static method, Write:

public class Console

{
public static void Write(String s) {· · ·} // (A)
public static void Write(Double d) {· · ·} // (B)
}

We would like to be able to invoke Write by calling a Haskell function in-
vokeWrite. For example:

invokeWrite args = · · ·

main = do
invokeWrite ("Salsa")
invokeWrite (10 :: Int32 )

where invokeWrite invokes the appropriate method implementation.

Assuming we can arrange for the overload resolution algorithm to return the sig-
nature of the chosen method as a tuple, we need to be able to dispatch the invoca-
tion to the appropriate method implementation based on this type. Haskell’s type
class system provides exactly what we need to implement such a type-indexed
invocation function. We define a type class WriteInvoker which has an instance
for each method implementation of the overloaded method.

class WriteInvoker args where
rawInvokeWrite :: args → IO ()

instance WriteInvoker (String) where rawInvokeWrite s = · · ·
instance WriteInvoker (Double) where rawInvokeWrite d = · · ·

Connecting invokeWrite to rawInvokeWrite must involve the overload reso-
lution algorithm and the execution of any implicit conversions.

To keep the type signatures in this example clean, we define a type synonym
WriteCandidates that is equal to the type-level list of the signatures for the
Write method:

type WriteCandidates = (String ::: TNil) ::: (Double ::: TNil) ::: TNil
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We define invokeWrite in terms of rawInvokeWrite (defined above) and the
coerce function extended to handle tuples (defined in the previous section):

invokeWrite :: ∀args args ′.

(Resolve args WriteCandidates ∼ args ′,

Coercible args args ′,

WriteInvoker args ′)⇒
args → IO ()

invokeWrite args = rawInvokeWrite (coerce args :: args ′)

The function uses coerce to apply any implicit conversions to the argument
values before invoking the appropriate method implementation with rawIn-
vokeWrite. As with the implicit conversion support however, the magic is in
the type signature. The context of invokeWrite’s type signature lists three
constraints:

Resolve The effect of this constraint is to apply the overload resolution algo-
rithm to determine which signature from WriteCandidates should be in-
voked given the argument types (args). This is expressed as an equality
constraint which allows the result to be given a name, args ′.

Coercible This constraint ensures that there is a Coercible instance for con-
verting the argument tuple to the required type. Such an instance will exist
if the Resolve constraint is satisfied.

Invoker This constraint ensures that there is a WriteInvoker instance for in-
voking the appropriate Write implementation, as identified by the method
signature in args ′.

Also of note is the use of the lexically scoped type variable args ′ in the type
annotation attached to the application of coerce. Without this type annotation,
the compiler is not aware that the result type of coerce should be args ′.

Using the above implementation for invokeWrite, invocations of the Write method
behave just as they would if invoked from a C# program. The appropriate method
implementations are called for the following code, even for the second call where
the Int32 argument has to be implicitly converted to a Double in order to call the
(B) overload.

invokeWrite ("Salsa") -- invokes (A)
invokeWrite (42 :: Int32 ) -- invokes (B)
invokeWrite (pi :: Double) -- invokes (B)
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An extension of the technique described herein is used in Salsa for invoking meth-
ods and constructors. Since the Salsa implementation uses labels, a single func-
tion invoke and a single type class Invoker is used to handle all .NET methods
and constructor invocations, rather than the method-specific implementations of
this example. This label-based system is described in Chapter 7.

8.6 Error reporting

An undesirable consequence of implementing complicated algorithms at the type-
level is the verbosity of the error messages produced by the compiler when some-
thing goes wrong.

If a deep type function application fails to be substituted with an instance body,
then several screens of the partially evaluated type function implementation can
appear on screen. For example, if a non-bridge type is used in a method appli-
cation, and consequently there is no TyCode instance for the type, a very long
error message will ensue.

On the other hand, if the overload resolution fails legitimately (due to an ambigu-
ous invocation, for example) the type checking fails at the invocation function
and results in a relatively meaningful error message like the one below:

No instances for (Coercible (Obj Object_)

(Salsa.Error Salsa.NoMatch),

Invoker (Salsa.Error Salsa.NoMatch))

arising from a use of ‘invoke’ at ...

As more experience is gained with these sorts of applications of type functions,
it should be possible to add compiler support for producing more concise error
messages for these usage patterns.

8.7 Summary

This chapter demonstrated that not only is it possible to deal with both object-
oriented overloading and subtyping in Haskell, but that it can be done in an
elegant way that:

• is statically type-checked,

• avoids superfluous type annotations, and
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• requires only general-purpose Haskell extensions (in particular, type fami-
lies).

This was achieved by implementing algorithms to perform overload resolution
and implicit conversion calculations — tasks that are typically performed by a
C# compiler — in the Haskell type system as type functions. These algorithms
were then connected, using type constraints and type classes, to the value-level
infrastructure for interacting with objects.
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9

Discussion

A suitable way of presenting the results of this thesis is to show Salsa in action.
Consequently, this chapter presents a Haskell program that uses the Salsa library
in order to interoperate with .NET.

Listing 9.1 contains the Haskell program, while Listing 9.2 shows the equivalent
C# program for reference. The code speaks for itself: Salsa’s goal of providing
a usable, safe, convenient, lightweight and practical bridge to .NET, has been
achieved.

module Main where

import Salsa
import Salsa.System.Windows.Forms

main :: IO ()
main = withCLR $ do

f ← new Form ()
set f [Text := "Saucy Salsa Sample"]

b ← new Button ()
set b [Left :== 10,

Top :== 10,
Text := "E&xit",

Click :+> delegate EventHandler
(λ → f # Close ())]

get f Controls >>=# Add (b)
Application # Run (f )

Listing 9.1: Salsa sample
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using System;
using System.Windows.Forms;

class Program
{

static void Main(string [ ] args)
{

Form f = new Form();
f .Text = "Saucy Salsa Sample";

Button b = new Button ();
b.Left = 10;
b.Top = 10;
b.Text = "E&xit";
b.Click += delegate(object s,EventArgs e)
{

f .Close();
};
f .Controls.Add(b);
Application.Run(f );
}
}

Listing 9.2: Salsa sample (C# equivalent)
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10

Conclusion

The original goal of this thesis was to allow Haskell and .NET programs to inter-
operate by building a software bridge between their respective runtime systems.
The development of Salsa as part of this thesis certainly satisfies the original goal.

In satisfying this goal, Salsa provides Haskell with access to the extensive collec-
tion of libraries in the .NET framework. It provides this access in a type-safe
way, with a natural syntax, and without requiring arbitrary language extensions.

Quite unexpectedly however, Salsa was not the only outcome of this thesis. In
overcoming the challenges of building the bridge, some useful techniques were
discovered for supporting object-oriented features such as subtyping and over-
loading in Haskell, in a type-safe way. Properly generalised, these techniques
could well be useful outside the domain of bridging Haskell with .NET, to the
point of encoding arbitrary static type checking algorithms in the source code of
normal Haskell programs.

10.1 Future work

Despite the development of Salsa, and the additional unexpected outcomes from
this work, there is still a great deal of scope for future work. Some of this future
work takes the form of continuing the development of Salsa, but there is also
scope for future research work.

10.1.1 Development directions

In its current state, Salsa is a useful tool for interacting with .NET libraries,
however it is not complete. There are a number of areas where the feature set of
Salsa can be extended:
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• Extend Salsa to support all C# features, including: arrays, explicit co-
ercions, operators, indexers, exception handling, and additional primitive
data types.

• Investigate further optimisations to the marshaling system and dynamic
code generation.

• Automatically include the driver assembly into Haskell executables that use
the Salsa library.

• Extend the bridge to support bidirectional interoperability, including the
ability to host the Haskell runtime system in a .NET application.

• Support Mono, an open-source implementation of the .NET platform.

10.1.2 Research directions

There are a number of directions in which research work relating to this thesis
could proceed, these include:

• Use type functions to statically check constraints on generic type arguments,
and implement support for generics in Salsa.

• Exploring the use of type functions for encoding arbitrary static type check-
ing algorithms at the type level, in Haskell programs.

• Providing compiler support for concise error messages in the context of
type-level algorithms implemented with type functions.

• Employing rewrite rules in the Haskell compiler in order to minimise inter-
runtime control transfers by grouping consecutive foreign-runtime opera-
tions together.
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8.2 Gödel numbering for types . . . . . . . . . . . . . . . . . . . . . . 49
8.3 Type-level type equality and type list equality . . . . . . . . . . . 49
8.4 Type-level subtype predicate . . . . . . . . . . . . . . . . . . . . 51
8.5 Type-level implicit conversion predicate . . . . . . . . . . . . . . 53
8.6 Type-level ‘prim’ and ‘ref’ predicates . . . . . . . . . . . . . . . . 53
8.7 Coercible class to coerce values . . . . . . . . . . . . . . . . . . . 55
8.8 Value-level overload resolution algorithm . . . . . . . . . . . . . . 60
8.9 Value-level >c and >m predicates . . . . . . . . . . . . . . . . . . 61
8.10 Type-level overload resolution algorithm . . . . . . . . . . . . . . 62
8.11 Type-level >c and >m predicates . . . . . . . . . . . . . . . . . . 63
8.12 TupleToList and ListToTuple type functions . . . . . . . . . . . . 63
8.13 Tuple-supporting Resolve type function . . . . . . . . . . . . . . 64
8.14 Extending Coercible to coerce tuples . . . . . . . . . . . . . . . . 64
9.1 Salsa sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.2 Salsa sample (C# equivalent) . . . . . . . . . . . . . . . . . . . . 70

74



References

[1] Manuel M. T. Chakravarty, Tom Schrijvers, et al. GHC/Type families
- Haskell Wiki. http://haskell.org/haskellwiki/GHC/Type_families. Ac-
cessed: 28 October 2007.

[2] Manuel M. T. Chakravarty, Gabrielle Keller, and Simon Peyton Jones. As-
sociated Type Synonyms. In ICFP ’05: Proceedings of the International
Conference on Functional Programming. ACM Press, September 2005. URL
http://www.cse.unsw.edu.au/~keller/CP05.html.

[3] Microsoft Corporation. .NET Framework Developer Center. http://msdn2.

microsoft.com/en-us/netframework. Accessed: 14 May 2007.

[4] ECMA. ECMA-334: C# Language Specification. ECMA (European Associ-
ation for Standardizing Information and Communication Systems), Geneva,
Switzerland, second edition, December 2002.

[5] Sigbjorn Finne. Hugs98 for .NET. http://galois.com/~sof/hugs98.net.
Accessed: 3 May 2007.

[6] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon L. Peyton Jones.
H/Direct: A binary foreign language interface for Haskell. In International
Conference on Functional Programming, pages 153–162, 1998.

[7] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon L. Peyton Jones. Call-
ing hell from heaven and heaven from hell. In International Conference on
Functional Programming, pages 114–125, 1999.

[8] Apple Inc. The Objective-C programming language. http://developer.

apple.com/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf. Ac-
cessed: 13 May 2007.

[9] Mark P. Jones. Type Classes with Functional Dependencies. Lecture Notes in
Computer Science, 1782, 2000. URL http://web.cecs.pdx.edu/~mpj/pubs/

fundeps.html.

75



[10] Mark P. Jones et al. Hugs 98. http://www.haskell.org/hugs. Accessed: 3
May 2007.

[11] Einar Karttunen. hs-fltk. http://www.cs.helsinki.fi/u/ekarttun/hs-fltk.
Accessed: 28 October 2007.

[12] Andrew Kennedy and Don Syme. Design and implementation of generics
for the .NET Common Language Runtime. In PLDI ’01: Proceedings of
the ACM SIGPLAN 2001 conference on Programming language design and
implementation, pages 1–12, New York, NY, USA, 2001. ACM Press.
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