
The Evolution of Curry
———–

From Protozoon to Mammal

From Prolog to Haskell

The Best Genes of Both Parents

I functional (algebraic data types, higher order, laziness)
I logic (non-determinism, narrowing)

Why do You need Non-Determinism / Narrowing?

I logic puzzles (wolf, sheep and cabbage)
I enumeration of test cases (SmallCheck)
I efficient enumeration of test cases (Lazy SmallCheck)
I circuit analysis (Wired)
I <insert your idea here>

Why do You need Non-Determinism / Narrowing?

I logic puzzles (wolf, sheep and cabbage)

I enumeration of test cases (SmallCheck)
I efficient enumeration of test cases (Lazy SmallCheck)
I circuit analysis (Wired)
I <insert your idea here>

Why do You need Non-Determinism / Narrowing?

I logic puzzles (wolf, sheep and cabbage)

I enumeration of test cases (SmallCheck)
I efficient enumeration of test cases (Lazy SmallCheck)
I circuit analysis (Wired)
I <insert your idea here>

Why do You need Non-Determinism / Narrowing?

I logic puzzles (wolf, sheep and cabbage)
I enumeration of test cases (SmallCheck)

I efficient enumeration of test cases (Lazy SmallCheck)
I circuit analysis (Wired)
I <insert your idea here>

Why do You need Non-Determinism / Narrowing?

I logic puzzles (wolf, sheep and cabbage)
I enumeration of test cases (SmallCheck)
I efficient enumeration of test cases (Lazy SmallCheck)

I circuit analysis (Wired)
I <insert your idea here>

Why do You need Non-Determinism / Narrowing?

I logic puzzles (wolf, sheep and cabbage)
I enumeration of test cases (SmallCheck)
I efficient enumeration of test cases (Lazy SmallCheck)
I circuit analysis (Wired)

I <insert your idea here>

Why do You need Non-Determinism / Narrowing?

I logic puzzles (wolf, sheep and cabbage)
I enumeration of test cases (SmallCheck)
I efficient enumeration of test cases (Lazy SmallCheck)
I circuit analysis (Wired)
I <insert your idea here>

The first of its Kind

characteristics PAKCS
I Portland Aachen Kiel Curry System
I Michael Hanus
I non-determinism, narrowing
I target language: Prolog
I search strategy: depth first

Non-Determinism

I overlapping rules induce non-determinism

coin :: Int
coin = 0
coin = 1

Main> coin
0
More?
1
More?
No more Solutions

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

coin’ :: Int
coin’ = 0 ? 1

Non-Determinism

I overlapping rules induce non-determinism

coin :: Int
coin = 0
coin = 1

Main> coin

0
More?
1
More?
No more Solutions

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

coin’ :: Int
coin’ = 0 ? 1

Non-Determinism

I overlapping rules induce non-determinism

coin :: Int
coin = 0
coin = 1

Main> coin
0
More?

1
More?
No more Solutions

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

coin’ :: Int
coin’ = 0 ? 1

Non-Determinism

I overlapping rules induce non-determinism

coin :: Int
coin = 0
coin = 1

Main> coin
0
More?
1
More?

No more Solutions

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

coin’ :: Int
coin’ = 0 ? 1

Non-Determinism

I overlapping rules induce non-determinism

coin :: Int
coin = 0
coin = 1

Main> coin
0
More?
1
More?
No more Solutions

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

coin’ :: Int
coin’ = 0 ? 1

Non-Determinism

I overlapping rules induce non-determinism

coin :: Int
coin = 0
coin = 1

Main> coin
0
More?
1
More?
No more Solutions

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

coin’ :: Int
coin’ = 0 ? 1

Non-Determinism

I overlapping rules induce non-determinism

coin :: Int
coin = 0
coin = 1

Main> coin
0
More?
1
More?
No more Solutions

(?) :: a -> a -> a
x ? _ = x
_ ? y = y

coin’ :: Int
coin’ = 0 ? 1

Functional Species

double :: Int -> Int
double x = x+x

call-by-value

double (0+1) = double 1
= 1+1
= 2

call-by-name

double (0+1) = (0+1) + (0+1)
= 1 + (0+1)
= 1 + 1
= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name

double (0+1) = (0+1) + (0+1)
= 1 + (0+1)
= 1 + 1
= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1

= 2

call-by-name

double (0+1) = (0+1) + (0+1)
= 1 + (0+1)
= 1 + 1
= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name

double (0+1) = (0+1) + (0+1)
= 1 + (0+1)
= 1 + 1
= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)
= 1 + 1
= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)

= 1 + 1
= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)
= 1 + 1

= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)
= 1 + 1
= 2

call-by-need

double (0+1) = let x=0+1 in x+x
= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)
= 1 + 1
= 2

call-by-need
double (0+1) = let x=0+1 in x+x

= let x=1 in x+x
= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)
= 1 + 1
= 2

call-by-need
double (0+1) = let x=0+1 in x+x

= let x=1 in x+x

= 1+1
= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)
= 1 + 1
= 2

call-by-need
double (0+1) = let x=0+1 in x+x

= let x=1 in x+x
= 1+1

= 2

Functional Species

double :: Int -> Int
double x = x+x

call-by-value
double (0+1) = double 1

= 1+1
= 2

call-by-name
double (0+1) = (0+1) + (0+1)

= 1 + (0+1)
= 1 + 1
= 2

call-by-need
double (0+1) = let x=0+1 in x+x

= let x=1 in x+x
= 1+1
= 2

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value

double coin = double (0|1)
= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name

double coin = coin+coin
= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name

double coin = coin+coin
= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1

= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name

double coin = coin+coin
= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1

= 0 | 2

=⇒ call-time choice

call-by-name

double coin = coin+coin
= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name

double coin = coin+coin
= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name

double coin = coin+coin
= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name
double coin = coin+coin

= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name
double coin = coin+coin

= (0|1)+(0|1)

= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name
double coin = coin+coin

= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-value
double coin = double (0|1)

= double 0 | double 1
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

call-by-name
double coin = coin+coin

= (0|1)+(0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need

double coin = let x=coin in x+x
= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x

= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)

= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x

= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x

= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1

= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Functional Logic Species

coin :: Int
coin = 0
coin = 1

call-by-need
double coin = let x=coin in x+x

= let x=0|1 in x+x
= (0|1) + (0|1)
= ... = 0 | 1 | 1 | 2

=⇒ run-time choice

double coin = let x=0|1 in x+x
= let x=0 in x+x | let x=1 in x+x
= 0+0 | 1+1
= 0 | 2

=⇒ call-time choice

Non-Determinism

insertnd :: a -> [a] -> [a]
insertnd x ys = x:ys
insertnd x (y:ys) = y:insertnd x ys

Main> insertnd 3 [1,2]
[1,2,3]
[1,3,2]
[3,1,2]

Non-Determinism

insertnd :: a -> [a] -> [a]
insertnd x ys = x:ys
insertnd x (y:ys) = y:insertnd x ys

Main> insertnd 3 [1,2]

[1,2,3]
[1,3,2]
[3,1,2]

Non-Determinism

insertnd :: a -> [a] -> [a]
insertnd x ys = x:ys
insertnd x (y:ys) = y:insertnd x ys

Main> insertnd 3 [1,2]
[1,2,3]

[1,3,2]
[3,1,2]

Non-Determinism

insertnd :: a -> [a] -> [a]
insertnd x ys = x:ys
insertnd x (y:ys) = y:insertnd x ys

Main> insertnd 3 [1,2]
[1,2,3]
[1,3,2]

[3,1,2]

Non-Determinism

insertnd :: a -> [a] -> [a]
insertnd x ys = x:ys
insertnd x (y:ys) = y:insertnd x ys

Main> insertnd 3 [1,2]
[1,2,3]
[1,3,2]
[3,1,2]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]
[3,2,1]
[3,1,2]
[2,3,1]
[2,1,3]
[1,3,2]
[1,2,3]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]

[3,2,1]
[3,1,2]
[2,3,1]
[2,1,3]
[1,3,2]
[1,2,3]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]
[3,2,1]

[3,1,2]
[2,3,1]
[2,1,3]
[1,3,2]
[1,2,3]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]
[3,2,1]
[3,1,2]

[2,3,1]
[2,1,3]
[1,3,2]
[1,2,3]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]
[3,2,1]
[3,1,2]
[2,3,1]

[2,1,3]
[1,3,2]
[1,2,3]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]
[3,2,1]
[3,1,2]
[2,3,1]
[2,1,3]

[1,3,2]
[1,2,3]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]
[3,2,1]
[3,1,2]
[2,3,1]
[2,1,3]
[1,3,2]

[1,2,3]

Non-Determinism

permute :: [a] -> [a]
permute [] = []
permute (x:xs) = insertnd x (permute xs)

Main> permute [1..3]
[3,2,1]
[3,1,2]
[2,3,1]
[2,1,3]
[1,3,2]
[1,2,3]

Non-Determinism

sort :: [a] -> [a]
sort xs | ordered ys = ys
where
ys = permute xs

Main> sort [3,2,1]
[1,2,3]

Non-Determinism

sort :: [a] -> [a]
sort xs | ordered ys = ys
where
ys = permute xs

Main> sort [3,2,1]

[1,2,3]

Non-Determinism

sort :: [a] -> [a]
sort xs | ordered ys = ys
where
ys = permute xs

Main> sort [3,2,1]
[1,2,3]

Narrowing

list :: [Int]
list = ys ++ [1]
where
ys free

Main> list
[1]
[_a,1]
[_a,_b,1]
[_a,_b,_c,1]

Narrowing

list :: [Int]
list = ys ++ [1]
where
ys free

Main> list

[1]
[_a,1]
[_a,_b,1]
[_a,_b,_c,1]

Narrowing

list :: [Int]
list = ys ++ [1]
where
ys free

Main> list
[1]

[_a,1]
[_a,_b,1]
[_a,_b,_c,1]

Narrowing

list :: [Int]
list = ys ++ [1]
where
ys free

Main> list
[1]
[_a,1]

[_a,_b,1]
[_a,_b,_c,1]

Narrowing

list :: [Int]
list = ys ++ [1]
where
ys free

Main> list
[1]
[_a,1]
[_a,_b,1]

[_a,_b,_c,1]

Narrowing

list :: [Int]
list = ys ++ [1]
where
ys free

Main> list
[1]
[_a,1]
[_a,_b,1]
[_a,_b,_c,1]

Narrowing

last :: [a] -> a
last xs | ys ++ [y] =:= xs = y
where
ys, y free

Main> last [1..4]
4

Main> last [error "_|_",2]
ERROR: ’_|_’

Narrowing

last :: [a] -> a
last xs | ys ++ [y] == xs = y
where
ys, y free

Main> last [1..4]
4

Main> last [error "_|_",2]
ERROR: ’_|_’

Narrowing

last :: [a] -> a
last xs | ys ++ [y] == xs = y
where
ys, y free

Main> last [1..4]

4

Main> last [error "_|_",2]
ERROR: ’_|_’

Narrowing

last :: [a] -> a
last xs | ys ++ [y] == xs = y
where
ys, y free

Main> last [1..4]
4

Main> last [error "_|_",2]
ERROR: ’_|_’

Narrowing

last :: [a] -> a
last xs | ys ++ [y] == xs = y
where
ys, y free

Main> last [1..4]
4

Main> last [error "_|_",2]

ERROR: ’_|_’

Narrowing

last :: [a] -> a
last xs | ys ++ [y] == xs = y
where
ys, y free

Main> last [1..4]
4

Main> last [error "_|_",2]
ERROR: ’_|_’

Narrowing Non-Determinism

data Peano = Zero | Succ Peano

peano :: Peano
peano = Zero
peano = Succ peano

pList :: [Peano]
pList = []
pList = peano : pList

last :: [Peano] -> Peano
last xs | ys ++ [y] == xs = y
where
ys = pList
y = peano

Narrowing Non-Determinism

data Peano = Zero | Succ Peano

peano :: Peano
peano = Zero
peano = Succ peano

pList :: [Peano]
pList = []
pList = peano : pList

last :: [Peano] -> Peano
last xs | ys ++ [y] == xs = y
where
ys = pList
y = peano

Narrowing Non-Determinism

data Peano = Zero | Succ Peano

peano :: Peano
peano = Zero
peano = Succ peano

pList :: [Peano]
pList = []
pList = peano : pList

last :: [Peano] -> Peano
last xs | ys ++ [y] == xs = y
where
ys = pList
y = peano

Narrowing Non-Determinism

data Peano = Zero | Succ Peano

peano :: Peano
peano = Zero
peano = Succ peano

pList :: [Peano]
pList = []
pList = peano : pList

last :: [Peano] -> Peano
last xs | ys ++ [y] == xs = y
where
ys = pList
y = peano

An Evolution Step

characteristics KiCS
I Kiel Curry System
I Bernd Braßel, Frank Huch
I non-determinism
I target language: Haskell
I search strategy: arbitrary, explicit searchtree
I On a Tighter Integration of Functional and Logic

Programming, APLAS 2007

Killer Application

prop_Insert :: Peano -> [Peano] -> Bool
prop_Insert p ps = ordered (insert p ps)

check :: (a -> b -> Bool) -> (a,b)
check prop | not (prop x y) = (x,y)

where
x, y free

Main> check prop_Insert
(Zero,(Succ _a:Zero:_b))
(Succ Zero,(Succ _a:Zero:_b))
...

Killer Application

prop_Insert :: Peano -> [Peano] -> Bool
prop_Insert p ps = ordered (insert p ps)

check :: (a -> b -> Bool) -> (a,b)
check prop | not (prop x y) = (x,y)

where
x, y free

Main> check prop_Insert
(Zero,(Succ _a:Zero:_b))
(Succ Zero,(Succ _a:Zero:_b))
...

Killer Application

prop_Insert :: Peano -> [Peano] -> Bool
prop_Insert p ps = ordered (insert p ps)

check :: (a -> b -> Bool) -> (a,b)
check prop | not (prop x y) = (x,y)

where
x, y free

Main> check prop_Insert

(Zero,(Succ _a:Zero:_b))
(Succ Zero,(Succ _a:Zero:_b))
...

Killer Application

prop_Insert :: Peano -> [Peano] -> Bool
prop_Insert p ps = ordered (insert p ps)

check :: (a -> b -> Bool) -> (a,b)
check prop | not (prop x y) = (x,y)

where
x, y free

Main> check prop_Insert
(Zero,(Succ _a:Zero:_b))

(Succ Zero,(Succ _a:Zero:_b))
...

Killer Application

prop_Insert :: Peano -> [Peano] -> Bool
prop_Insert p ps = ordered (insert p ps)

check :: (a -> b -> Bool) -> (a,b)
check prop | not (prop x y) = (x,y)

where
x, y free

Main> check prop_Insert
(Zero,(Succ _a:Zero:_b))
(Succ Zero,(Succ _a:Zero:_b))

...

Killer Application

prop_Insert :: Peano -> [Peano] -> Bool
prop_Insert p ps = ordered (insert p ps)

check :: (a -> b -> Bool) -> (a,b)
check prop | not (prop x y) = (x,y)

where
x, y free

Main> check prop_Insert
(Zero,(Succ _a:Zero:_b))
(Succ Zero,(Succ _a:Zero:_b))
...

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND

data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}

data [a] = [] | {a} : {[a]}

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{ _ }

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{[], _:_ }

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{[], { _ }:_ }

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{[], {Zero, Succ _ }:_ }

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{[], {Zero, Succ { _ }}:_ }

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{[], {Zero, Succ {Zero, ...}}:_ }

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{[], {Zero, Succ {Zero, ...}}:{ _ }}

Haskell ND vs. Curry ND

Haskell ND
data Peano = Zero | Succ Peano
data [a] = [] | a : [a]

{[], [Zero], [Zero,Succ Zero], [Succ Zero,Zero], ...}

Curry ND
data Peano = Zero | Succ {Peano}
data [a] = [] | {a} : {[a]}

{[], {Zero, Succ {Zero, ...}}:{[], ...}}

characteristics explicit-sharing
I library, available via hackage
I Sebastian Fischer, Oleg Kiselyov,

Chung-chieh Shan
I non-determinism
I "target language": monadic Haskell
I search strategy: arbitrary, any MonadPlus
I Purely Functional Lazy Non-deterministic

Programming, ICFP 2009

this is not the end of evolution!

characteristics explicit-sharing
I library, available via hackage
I Sebastian Fischer, Oleg Kiselyov,

Chung-chieh Shan
I non-determinism
I "target language": monadic Haskell
I search strategy: arbitrary, any MonadPlus
I Purely Functional Lazy Non-deterministic

Programming, ICFP 2009

this is not the end of evolution!

Advertisement

PAKCS www.informatik.uni-kiel.de/~pakcs

KiCS www.informatik.uni-kiel.de/prog/
mitarbeiter/bernd-brassel/projects

explicit sharing sebfisch.github.com/explicit-sharing

give it a try!

www.informatik.uni-kiel.de/~pakcs
www.informatik.uni-kiel.de/prog/mitarbeiter/bernd-brassel/projects
www.informatik.uni-kiel.de/prog/mitarbeiter/bernd-brassel/projects
sebfisch.github.com/explicit-sharing

have

logical

fun!

have logical fun!

