Leksah: An Integrated Development
Environment for Haskell

Jiirgen Nicklisch-Franken
March 28, 2009

Contents

(1 Introductionl

[L.2.1 Version 0.4 Beta Release February/March 2009
[1.2.2 Version 0.1 Alpha Release February 2008 |

[2 Installing Leksah|
2.1 _Generic Installation Instructions|
[2.1.1 Install GHC (Glasgow Haskell Compiler)[.

[2.1.5 Where Things Are Installed|,
2.2 OS X (using MacPorts)|

2.3 Ubuntu (8.10)].

[2.3.1 Install Prerequisites]
2.3.2 Install GHC (Once 6.10.1 is in the universe repository)
2.3.3 Instell GHC (Until then install from source)|

[3_ First start of Leksahl

4__The Editorl

A1

oearch and Replace|o oo o

12

Source Candy|

I3

Completion|

A4

Background Bwld| o L

[6 Packages (Cabal)|

b1

Package kditor|o o

53

Import Helper|. o o o

54

Flags and other operations|.

[6 Navigation and Metadata|

[7 Configuration|

71

Window Layout|.

72

Using the Flipper to Switch Active Panes)

[7.3

oession handling| oo oo

fr4

Shorteutsl

[7.0

Configuration files| oo

0.1

Command line arguments| L.

0.2

The Candy file] o

0.3

The Keymap file| o

9.4

Preferences filel

9.5

Session Filel

11
11
12
13
13
14

15
15
16
17
18

18
19
21
21
23
23

24
24
26
26
26
27
27

27
27
28
28

List of Figures

1 FirstStart dialogl oo 9
2 After startl. 10
13 Leksah with open project| 10
4 Filemenul 11
b Editmenul. 11
B Tindbarl 12
7 pource candy example] L Lo oL 12
] Completion| 13
9 Editor Preferences| oo 14
[10 Package Menu|. 15
[1T Packageluditor 1|. 16
[12 Import dialog| 17
13 Package Flags| 18
[14 Modules pane| 19
[15 Construct module dialog| 0L 20

0 nfo pane| 21
[17 Search panel 22
18 References Panel. 22
19 Metadata Preferenced. 23
20 Filemenul o 23
22 GUI Preferencesl 25
2 View menul oo e e e 25
23 Sessionmenul e 26

License

Leksah has been put under the GNU GENERAL PUBLIC LICENSE Version 2. The full
license text can be found in the file data/gpl.txt in the distribution.

1 Introduction

Leksah is an IDE (Integrated Development Environment) for the programming language
Haskell. It is written in Haskell. Leksah is intended as a practical tool to support the
Haskell development process.

Leksah uses GTK+ as GUI Toolkit with the gtk2hs binding. It is platform independent
and should run on any platform where GTK+, gtk2hs and GHC can be installed. It uses
the Cabal package management and build system for Package Management. It needs the
Glasgow Haskell Compiler for full functionality (GHC).

This document is a reference to the functionality you can find in Leksah, it is not
intended to be a tutorial. Since Leksah is in the state of development the information
may be incomplete or even wrong.

1.1 Further Information

The home page for Leksah is leksah.orgl The source code for Leksah is hosted under
code.haskell.org/leksah. The leksah user Wiki is haskell.org/haskellwiki/Leksah. The
leksah mailing list can be accessed at projects.haskell.org/cgi-bin /mailman/listinfo/leksah.
This manual can be found at leksah.org/leksah manual.pdf. An issue tracker is at
code.google.com /p/leksah /issues/list. You can contact the developers at info (at) lek-
sah.org.

For the Programming language Haskell go to www.haskell.org. For information about
gtk2hs www.haskell.org/gtk2hs/. For information about GTK+ go to www.gtk.org.

1.2 Release Notes
1.2.1 Version 0.4 Beta Release February/March 2009

The 0.4 Release is the first beta release of Leksah. It should be usable for practical work
for the ones that wants to engage with it.

It depends on GHC >6.10.1 and gtk2hs > 0.10.0.

The class pane and the history feature are not quite ready, so we propose not to use
it yet.

1.2.2 Version 0.1 Alpha Release February 2008

This is a pre-release of Leksah. The editor for Cabal Files is not ready, so we propose
not to use it yet.

2 Installing Leksah

It is a good idea to install everything from sources when using Leksah. Leksah
can then use the output produced while building to give you much better Metadata. You
will be able to see the source comments for functions while autocompleting and you will
be able to look up the source of functions easily. Sadly, on Windows it can be difficult

http://leksah.org
http://code.haskell.org/leksah
http://haskell.org/haskellwiki/Leksah
http://projects.haskell.org/cgi-bin/mailman/listinfo/leksah
http://leksah.org/leksah_manual.pdf
http://code.google.com/p/leksah/issues/list
mailto:info@leksah.org
mailto:info@leksah.org
http://www.haskell.org
http://www.haskell.org/gtk2hs/
http://www.gtk.org

to install GHC and Gtk2Hs from source and you may wish to install both using the
binary installers.

If you have any trouble installing please check the Wiki, the mailing list or contact the
developers to find a solution. If it is a Leksah problem, then it is important to us and
needs to be fixed.

In the future we would like to have packages/installers for Linuz distributions, Windows
and Mac. Please contact us if you can offer help.

2.1 Generic Installation Instructions
2.1.1 Install GHC (Glasgow Haskell Compiler)

At the time of writing Leksah supports only the most current version (6.10.1). For
information about installing GHC go to http://haskell.org/ghcl

2.1.2 Install Gtk2Hs

At the time of writing Leksah supports only the most current version (0.10.0). For
information about installing Gtk2Hs got to http://haskell.org/gtk2hs.

If you are planning on installing a newer version, then you will need to make sure it is
compatible with the version of GHC you have installed first.

On operating systems with a package manager you may wish to use a source os package
and build a binary os package to install. You should be able to prevent the working
directory from being cleaned, so it can be used for Leksah’s Metadata. Doing this means
that other os packages depending on Gtk2Hs can still easily be installed.

If you compile Gtk2Hs manually, check the output of ./configure. At the end it will list
the haskell packages that are going to be build. Leksah needs gtk, glib and gtksource-
view?2.

Gtk2Hs conditionally compiles some code dependent of the version of the underlying
Gtk libraries. This can cause strange compiler errors when compiling leksah later.

2.1.3 Install Cabal

At the time of writing Leksah requires at least version 1.6.0.1. For information about
installing Gtk2Hs got to http://haskell.org/caball

On operating systems with package managers you may find that a Cabal package is
avaliable. Once again if you want good Metadata for the Cabal functions, try to build
binaries on your machine.

2.1.4 Install Leksah

EiTHER: Install cabal-install from http://haskell.org/cabal. Then run “cabal install
leksah”.

ORr: Download, configure, build and install the prerequisite packages: binary >0.4.1,
bytestring >0.9.0.1, utf8-string >0.3.1.1, regex-posix >0.39.1 which is available from

http://haskell.org/ghc
http://haskell.org/gtk2hs
http://haskell.org/cabal
http://haskell.org/cabal

HackageDB hackage .haskell.org with typical Cabal procedure. (Go to the root folder
of the package. Then do runhaskell configure, runhaskell build, sudo runhaskell install.
The other packages needed should have been installed with GHC anyway. (I'm nut sure
if GHC-extralibs is needed). Then get the leksah package via hackage and do the same.

2.1.5 Where Things Are Installed

Leksah installs a an executable in a folder that should be in the search path, and a couple
of data files in a data folder. These places are chosen by the Cabal package management
system and depend on the target platform and the way you install. On Linux the data
folder may be /usr/share/leksah-0.4/data. For storing preferences, sessions and collected
meta-data Leksah constructs a .leksah directory in your home folder. If you want to
change or add configuration files for keymaps, source candy, etc, you can put them in
this place.

2.2 OS X (using MacPorts)

This is our recommended procedure for installing on OS X at present.

2.2.1 Install MacPorts

Download and install MacPorts by following the instructions on http://www.macports.
org/install.phpl Make sure you run “sudo port -v selfupdate”.

2.2.2 Set Variants To Use Quartz (Optional)

If you want to use the Quartz version of GTK+ (instead of the X11 version) then add
the following to /opt/local/etc/macports/variants.conf.

+no_x11

-x11

+quartz
Warning 1 doing this will disable OpenGL support in GTK+ or Gtk2Hs (gtkglext).

Warning 2 for some reason GTK applications when they start will not be in the
foreground, instead they will be hidden all your other running applications.

2.2.3 Update Gtk2Hs Portfile (0.9.13 Will Not Work)

At the time of writing the Gtk2Hs Portfile was out of date. Check /opt/local/var/macports/sources/rsync.m:
If says it is for version 0.9.13 of Gtk2Hs then you should replace it with the one attached
to this issue http://trac.macports.org/ticket/17308

2.2.4 Install

Run the following to install leksah. The -k is important it keeps the source and .hi files
for use in the Leksah metadata.

hackage.haskell.org
http://www.macports.org/install.php
http://www.macports.org/install.php
http://trac.macports.org/ticket/17308

sudo port install gtk2 cairo librsvg libglade2 gtksourceview2 gtkglext
gtk-chtheme gtk2-clearlooks

sudo port -k install ghc gtk2hs hs-cabal

cabal install leksah

2.2.5 Make It Look Nice

Run gtk-chtheme and choose one of the Clearlooks themes.

2.2.6 Point Leksah At The Source

Run “leksah” and when it asks for “paths under which haskell source packages may be

found” add the following to the list.
Jopt/local /var/macports/build/ opt_local var macports sources rsync.macports.org_release ports
6.10.1
/opt/local /var/macports/build/ opt_local var macports sources rsync.macports.org_release ports
0.10.0

2.3 Ubuntu (8.10)
Thanks to Sean Chapel for help with this http://seanchapel.blogspot.com/2009/03/
haskell.htmll
2.3.1 Install Prerequisites
Open up the package manager and install the following packages:
e glib-devel
e gtksourceview2-devel
e make
e gcC
o gt

e libgmp3-dev

2.3.2 Install GHC (Once 6.10.1 is in the universe repository)

At the time of writing only 6.8.2 was available in the Ubuniu universe repository.

We recommend building the binary package locally so you have the source ready for
use in Leksah. The following should leave you with a copy of the GHC source in the
current directory in a state that is ready for use with Leksah.

sudo apt-get build-dep ghc

apt-get -b source ghc

sudo dpkg -i ghc*.deb

http://seanchapel.blogspot.com/2009/03/haskell.html
http://seanchapel.blogspot.com/2009/03/haskell.html

2.3.3 Instell GHC (Until then install from source)
2.3.4 Install Cabal

wget http://www.haskell.org/cabal/release/cabal-install-0.6.2/cabal-install-0.6.2.tar.gz
tar -xvjpf cabal-install-0.6.2.tar.gz

cd cabal-install-0.6.2

./bootstrap

2.3.5 Install Gtk2Hs

Check the output of ./configure, at the end it should list the haskell packages it is going
to build. Leksah needs gtksourcevie, gtk and glib (if you have installed glib-devel and
gtksourceview2-devel then these should be enabled). If there are any that are not going
to be installed that you would like, then you most likely need to install the corresponding
-devel ubuntu package.

wget http://downloads.sourceforge.net/gtk2hs/gtk2hs-0.10.0.tar.gz

tar -xvjpf gtk2hs-0.10.0.tar.gz

cd gtk2hs-0.10.0.tar.gz

./configure

make

sudo make install

2.3.6 Add Cabal To Your PATH

Cabal can install packages globally or local to the current user (use —user and —global to
select which). We recommend you add the following to your ~/.bash profile
PATH=$PATH: /home/sean/.cabal/bin

export PATH
If you change your path you will have to restart X to make it apply automatically or

you can type
source ~/.bash_profile
each time you open a new terminal until you get a chance to restart X.

2.3.7 Install Leksah

cabal update
cabal install leksah

3 First start of Leksah

1. When you start Leksah for the first time, the first start dialog appears (Figure 1)
You have to specify folders, under which Haskell source code for installed packages
can be found. This can be any folder above the source directories. So figure out
what this will be on your system. You have to click the Add Button after selecting
the folder. If you use cabal install add the cabal install package directory to the
“extract packages from cabal-install” section.

Welcome to Leksah, an IDE for Haskell.

At the first start, Leksah will collect metadata about your installed haskell packages.

Select folders under which you have installed Haskell packages with sources below and click add.
It may take some time before Leksah starts up.

Paths under which haskell sources may be found

fhome/jutaro/Develop
fhomefjutaro/Haskell

| Add | Remaove |

[fhome}jutaro}.cabalfpackages ” Select folders|

Extract packages from cabal-install

Yes fhomefjutarof.cabalfpack;][Select folderl

| dQK | | egbbrechen |

Figure 1: FirstStart dialog

Later you can change this settings in the preferences pane in Leksah and you can
rebuild the metadata at any time. Details about metadata collection can be found
here:

If you want to see the first start dialog again, delete or rename the .leksah folder in
your home folder.

2. Now Leksah collects information about all installed packages on your system. So
it may take some time, but at further starts leksah will only collect information if
new packages have been installed. Their will eventually be a bunch of errors on
your command line, but don’t worry, it only means that Leksah has not succeeded
to extract the source locations and comments for certain modules or packages.

3. After starting up, Leksah will open its Main window in a standard configuration
(Figure 2).

4. The best way to start up will be to open an existing project. So select Pack-
age/OpenPackage from the menu and open a Cabal file of some project. Alterna-
tively you can construct a new project selecting the Package/NewPackage menu
option. A typical Leksah window may then look like Figure 3.

File Edit Package Metadata Session View Help

& % #AafexBn «- x
welcome.txt O Local O Package @ System Blacklist
1 Modules Packages Interface
2 # O F e # e i o
3 & w# # B #E o w# # & # b Codec b €2 Bits [
4 # # #HHE R # # ## R & # # b control F o2 FinalizerEnvptr
5 #HEE R # # ###E ## # # # b Data F & Finalizerptr
4 R E # #oo## #EER #o## b Debug b D & ForeignPtr
2 #F #F # b Distribution b D& Funbir
9 b D o
10 # HEREEE # # #o# # b GHC b D& int32
1 # # # % # # # # # b Graphics b D& Inted
12 # FREREWERE R R G R b Language b D& Inte
13 # # # # # B R # guag
14 # # # B2 E2 #£# #£# # b B Network network-2.2.0.1 b N &2 Intptr
15 s ddadE # AR # ## # [Numeric base-4.0.0.0, base-3.0.3.0 b N & Pool
16 [Prelude base-4.0.0.0, base-3.0.3.0 b D& Ptr
b b System b D & Stableptr
19 "The miracle comes quietly into the mind that stops an instant and is still® | [P Test b € & storable
20 b Text b D & word
21 b Trace P D & word16 [~]
22 For further info please consult: leksah.org b lneafe
23
2 Modules
Log
Modules Ln 1,Col 1
Figure 2: After start
File Edit Package Metadata Session View Help
i
Z2x 9¢ A QeI H - X
Basics.hs | DeepSeq.hs @ Local (O Package O System Blacklist
e =
55 1~/ | Modules Packages 2| Interface
[E Ueepseq TeK5an-U.4.3 F B Getter
ST asic Types ¥ Dt a0
28 - ~ Graphics F E Injector
59 hd ul
60 -- i F E Extractor
61 -- | A type for getting a field of a record ~ Edm" F E Applicator
62 -- B Basics . leksah-0.4.3 F B Editor
63 type Getter a fB = a- B [Composite leksah-0.4.3 > B B GUIEvent
64 -- . . [E MakeEditor leksah-0.4.3 N B GUIEventSelact
65 -- | A type for setting the field of a record B Parameters leksah-0.4.3 b D ventselector
66 -- - o F E allGUIEvents
67 type AT a B = B~ a- @ B simple leksan-0.4.3 F B GtkHandler
2 ¥ frame F E GtkRegFunc
69 -- [Panes leksah-0.4.3 b N E Notifier
70 -- | A type for injecting a value into an editor . ~
ol - 1 [viewFrame leksah-0.4.3 P E emptyNotifier
72 type Injector B = B - 10() v IDE F [E propagateEvent
73 -- £ [E Completion leksah-0.4.3 .
. . F E activateEvent
74 -- | A type for extracting a value from an editor - Core .
75 -- F E getStandardRegFunction
E State leksah-0.4.3
76 type Extractor B = I0(Maybe (B))
- Module:
78 -- | A type for the application of a value to be reflected in the GUI é
7 e
80 type Applicator By = B~ y () -- | leksah-8.4.3:Graphics.UI.Editor.Basics
81 -- A type for setting the field of a record
82 -- type Setter alpha beta
83 -- | A type to describe an editor. = beta -> alpha -> alpha
84 -- o is the type of the individual field of the record
85 type Editor ¢ = Parameters - Notifier
86 -~ IO0(wWidget, Injector a , Extractor a)
87
88 [Source l [Modules] [Refs l [Docu l [Search
89 -- [~]
————S8N8NSSSaa-——————————awaee) =J'"f" Log

Basics.hs leksah-0.4.3

Figure 3: Leksah with open project

10

4 The Editor

The central functionality needed for development is to edit
Haskell source files. Leksah uses the GtkSourceView2 wid- [E] Edt rackage Metadata Session vie

get for this. It provides syntax highlighting, undo/redo and | oo |
other features. In the file menu (Figure 4) you have the &swe Strg+5 |
usual functionality to open, save, close and revert files. You ;Z::ﬁs eSS
can as well close all files, and all files which are not stored # Close Stig+W |

Close All
Close All But Package

in or below the top folder of the current project (this is the
folder where the .cabal file resides). Leksah does not store e Atera
backup files. Leksah detects if a file has changed which is — 7 77T
currently edited and queries the user if a reload is desired.
When you open a file which is already open, leksah queries
if you want to make the currently open file active, instead
of opening it a second time (Leksah does not support multiple views on a file, but if you
open a file a second time, its like editing the file two times, which makes little sense).
When a file has changed compared to the stored version,
the file name is shown in red in the notebook tab. If you [package metadata _session)

Figure 4: File menu

. . <) Undo Strg+Z
want to change to a different buffer you can open a list of all & Redo UmschaltSg Y
open buffers by pressing the right mouse button, while the o

mouse is over a notebook tab. You can then select an entry copy
in this list to select this file. Faste
. . . . @ Delete

On the right side in the status bar you can see the line 2 selectall Stg+A

and column, in which the cursor is and if overwrite mode g Find Strg+F |

is switched on. In the second compartment from the left Find Next =

. . . . Find Previous Umschalt+F3

you can see the currently active pane, which is helpful if you S Strg+L

want to be sure that you have selected the right pane for Comment Strg+Alt+Rechts

some Operation. Uncomment Strg+Alt+Links |

. . . shift Left Alt+Links

In the edit menu (Figure 5) you find the usual operations: shift Right e |

undo, redo, cut, copy, paste and select all. In addition you e Dkt

can comment and un-comment selected lines in a per line Align =- Umschalt+Strg+L

t 1 F th 1 . 1 h Align -= Umschalt+Strg+R |

style (-). Furthermore you can align some special charac- el E—————

ters (=,<-,->,:1,|) in selected lines. The characters are never @ 1o Candy

moved to the left, but the operation is very simple and takes Edit Prefs }
the rightmost position of the special character in all lines,
and inserts spaces before the first occurrence of this special Figure 5: Edit menu

characters in the other lines for alignment.

4.1 Search and Replace

Leksah supports basic functionality for searching in text files. When you select Edit/Find
from the menu the find bar will open (Figure 6) and you can type in a text string. Hitting
the up and down arrow will bring you to the next/previous occurrence of the search string.
Hitting Enter will close the find bar and place the cursor at the currently selected search

11

search: [exe "% Case sensitive Entire word | Wrap around| Backward Replace:"aftersave ‘ﬁ Replace All Goto Line : 1 i

Figure 6: Find bar

position. Hitting Escape will close the find bar. You have options for case sensitive
search, for searching only whole worlds and for wrapping around, which means that the
search will start at the beginning/end of the file, when the end/beginning is reached. If
their is no occurrence of the search string the entry turns red.

To replace a text enter the new text in the replace entry and select replace or replace
all.

The find bar supports as well to jump to a certain line number in the current text
buffer.

4.2 Source Candy

-- | Map a function over a list and concatenate the results.
concatMap :x (@ = [bl) = [a]l = I[b]
concatMap f = foldr ((&) .) []

Figure 7: Source candy example

When using Source Candy, Leksah reads and writes pure ASCII Code files, but can
nevertheless show you nice symbols like A.This is done by replacing certain character
combinations by a Unicode character when loading a file or when typing, and replace it
back when the file is saved.

The use of the candy feature can be switched on and off in the menu and the preferences
dialog.

This feature can be configured by editing a .candy file in the .leksah folder or in the
data folder. The name of the candy file to be used can be specified in the Preferences
dialog.

Lines in the *.candy file looks like:

"\" 0x03bb --GREEK SMALL LETTER LAMBDA

"->" 0x2192 Trimming --RIGHTWARDS ARROW
The first entry in a line are the characters to replace. The second entry is the hex-

adecimal representation of the Unicode character to replace with. The third entry is an
optional argument, which specifies, that the replacement should add and remove blanks
to keep the number of characters. This is important because of the layout feature of
Haskell. The last entry in the line is an optional comment, which is by convention the
name of the Unicode character.

Using the source candy feature can give you problems with layout, because the align-
ment of characters with and without source candy may differ!

Leksah reads and writes files encoded in UTF-8. So you can edit Unicode Haskell
source files. When you want to do this, switch of source candy, because otherwise Unicode

12

characters may be converted to ASCII when saving the file.

4.3 Completion

Leksah has the ability to auto complete identifiers in text you type. Additionally the
Package, Module and Type of the id gets displayed if selected. This completion mode
can either be always on, or only be activated on pressing Ctrl4+Space. You can choose
between these two possibilities in the Preferences.

File Edit Package Metadata Session View Help

LB a&x ¢ APARD « X
Basics.hs | Extension.hs @ Local () Package) System Blacklist
131 -- | The widgets are the real event sources. @ | modules e [interface

132 -- The GtkRegFunc is the function used to register the event.

133 -- The connectIds are set, when the event is activated, and ¥ Control P E Getter

134 -- can be used to deactivate the event. E Event leksah-0.4.3 F [Setter

135 -- Or it is a propagated event and: <~ paa B -

36 - ;?2 g?s;;:;egm is a list of event sources, to which registrations < sy # B Extroctor

138 -- The last map is used to unregister propagated events properly [shared leksah-0.4.3 F [Applicator

139 - F DeepSeq leksah-0.4.3 F B Editor

140 type GUIEventReg = ([ConnectId Widget], E Default leksah-0.4.3 b D E GUIEvent

141 (INotifier], Map Unique [(Unique,Noti o e b M B it Salartor

142 Noti ("] -~ Teksah-0.4.3:Graphics .UI.Editor .Basics

143 -- -~ The event source in the gtk editor context

144 -~ | The event source in the gtk editor context - If the second argument is Left Handler the handler gets registered
145 -- If the second argument is Left Handler the handler get NotifyAncestor -- If the second argument is Right Unique the handler will be removed
146 -~ If the second argunent is Right Unique the handler wil yotifyInferior - The returned unique value must be used for unregistering an event
147 -- The returned unique value must be used for unregisteri .*oo = newtype Notifier

148 newtype Notifier = Noti (IORef (Handlers GUIEvent ro cuNotifyNonlinear = Noti :: (IORef

149 Map GUIEventSelec NotifyNonlinearvirtual (Handlers GUIEvent 10 GUIEventselector,

150 NotifyType E Wap GUIEventSelector GUIEventReg))

151 -> Notifier

152 emptyNotifier :: I0 Notifier Notifyunknown stricts: _

153 emptyNotifier = do Notifyvirtual

154 h - newIORef (Map.empty,Map.empty)

155 let noti = Noti h

156 return noti

157 L

158 instance EventSource Notifier GUIEvent I0 GUIEventSelect =

159 getHandlers (Noti pairRef) = do T D) -

160 (h,_) «~ readIORef pairRef @ RS - DL D

161 return h

162 Modules

163 setHandlers (Noti pairRef) h = do =

1= (,r) - readIORef pairRef -~ | leksah-6.4.3:Graphics .UI.Editor .Basics A
LES writeIORef pairRef (h,r) = type for m]ecng a value into an editor

e)) type Injector beta

167 myUnique = newUnique beta 2 10 ()

168 =
169 canTriggerEvent = True

178

171 registerEvent og(Noti pairRef) eventSel handg(Left %andler] = do [source | [Modues | [Res | [Do | [search]
172 (handlers, ger) - readIORef pairRef

173 unique ~ myUnique o [¥] | Info | Log

Basics.hs leksah-0.4.3

Figure 8: Completion

4.4 Background Build

Leksah can run builds while you work and highlight any errors as it finds them. This
works with a timer that runs every 100ms. If there are changes made to any open file
it....

e interrupts any running build by sending SIGINT (sadly this step is OSX and Linux
only at this point)

e waits for any running build processes to finish
e saves all the modified files

e starts a new build

Because we can’t interupt the build on windows there is an option in the Leksah build
preferences to have it skip the linking stage in background builds. This reduces the delay
before a next build starts.

13

4.5 Editor Preferences

FwMessages.ths‘ Prefs |

= .

GUI Options [] Show line numbers
Metadata Textview Font

Monospace 10

Right margin

Position
Show it ? 101 E‘

Tab width
[4 £

Use standard line ends even on windows

Remove trailing blanks when saving a file

Source candy
Candy specification
| Default

Useit?

Editor Style

[Select a special style?

</ Anwenden Restore i}__ Speichem € schlieBen
Figure 9: Editor Preferences

When selecting Edit/Edit Prefs the preferences pane opens, which has a selection called
Editor (Figure 8), were you can edit preferences for the editor. Some of the options you
find here refer to visual elements, like the display of line numbers, the font used, the
display of a right margin and the use of a style file for colors and syntax highlighting.

You can set here the Tab size you want. Leksah always stores tabs as spaces to ease
the use of layout. (As you may know, otherwise only a tab size of 8 can be digested by
Haskell compilers).

Leksah has an option for storing the files with standard UNIX line ends even on
Windows, and not using the infamous Cr/Lf combination. This is e.g. useful if Windows
and other users commit to the same repository.

Leksah offers as well to remove trailing blanks in lines, which you may choose as
default, because blanks at the end of lines make no sense in source code.

14

5 Packages (Cabal)

A central concept for any IDE is a package, which is a project
for development of some library or executable you may work
on. One instance of Leksah can only open one package at
a time. Leksah can store configurations for packages sep-
arately (and does this by default), so that you can switch
between packages and get exactly back to where you stopped
when opening a different package.

Leksah uses Cabal for package management, and opening
a package is done by opening a cabal file. So when you select
Package / Open Package from the menu, select the cabal file
of the desired package. Leksah shows the current package in
the third compartment in the status bar!

Metadata Session View Help

New Package
Open Package
Close Package

Edit Package
Edit Flags

Clean Package
4] Configure Package

) Build Package Strg+B
@ Run Strg+AIt+R
[=) Next Error Strg+)
3 Previous Error Umschalt+5trg+] |

To start with a new package select Package / NewPackage
from the menu. Then you have to select a folder for the
project, which you may give the same name you will give

Copy Package
Install Package
Register Package

to your package. Then the package editor will open up, in Unregister
which you have to supply information about your package. Test Package
Source Dist

Build Documentation

5.1 Package Editor

Open Doc
The package editor (Figure 10) is an editor for cabal files. —

Since cabal files offer complex options the editor is quite
complex. For a complete description of all options see the
Cabal User’s Guidel The package editor does not support
the cabal configurations feature. If you need cabal configu-
rations, you need to edit the cabal files as a text file. Since Leksah uses standard cabal
files with no modifications this is no problem, and you can use Leksah with such packages
with no problem, just the package editor will not work for you.

The minimum requirements for any package is to give a name and a version. Then
you will have to enter dependencies on other packages in the Dependencies part of the
editor. This will be at least the base package.

Finally you have to specify an executable or a library that should be the result of your
coding effort. You do this in the Executables and Library part of the editor. Cabal gives
the possibility to build more then one executable from one package and to build a library
and executables from one package.

For an executable you enter a name, the source file with the main function and a build
info. For a library you enter the exposed modules and a build info.

With build information you give additional information, e.g:

Figure 10: Package Menu

e where the sources can be found (relative to the root folder of the project, which is
the one with the cabal file).

e what additional non-exposed or non main modules your project includes

15

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

B | synopsis

Descrlptlt)ﬂ. | Haskell IDE written in Haskell
Dependencies

Meta Dep. Package Identifier
Extra Files

Name Version
|leksah | |oa

Executables
Library

1 Build Info
1 Compiler o
1 Extensions Description
10pts C An Integrated Development Environment for Haskell written in Haskell.
1 More Opts C

1 Opts OSX

Homepage

| http://www.leksah.org

Package URL

| http://code.haskell.org/leksah

Category

| Development

Add Build Info Remove Build Info Revert _?_;peichern ¢ schlieRen

Figure 11: PackageEditor 1

e compiler flags

e used language extensions in addition to Haskell 98 (These can also be specified in
the source files with pragmas)

e and many more ...

Because more then one executable and a library can be build from one package, it is
possible to have cabal files with more then one build info. The package editor deals with
this by the buttons Add / Remove Build Info. Every build info gets an index number,
and for executables and a library you specify the index of the build info. (However, the
usual case is to start with one build info).

5.2 Building

The most frequently used functionality with packages is to make a build, which is possible
after a successful configure. When you start a build, the log window will be opened or
displayed. In the Log window you can see the standard output the Cabal build produces,
which comes from the GHC compiler.

A build may produce errors and warnings. If this is the case the focus is set to the first
error/warning in the Log and the corresponding source file will open with the focus at
the point where the compiler reports the error. You can navigate to the next or previous

16

From which module is Applicator

"IDE.DescriptionPP"

<ok € Abbrechen

Figure 12: Import dialog

errors by clicking on the error or warning in the log window, or by using the menu, the
toolbar or a keystroke.

In the statusbar the state regarding to the build is displayed in the third compartment
from the right. It reads Building as long as a build is on the way and displays the
numbers of errors and warnings after a build.

Currently their is no way to cancel a build in progress, but this is on the list.

5.3 Import Helper

A frequent and annoying error is the Not in scope compiler error. In the majority of cases
it means that an import statement is missing. If this is the case you can choose Add
import from the context menu in the log pane. Leksah will then add an import statement
to the import list. If their is more then one module the identifier can be imported from, a
dialog will appear which queries you about the module you want to import from (Figure
11).

Leksah then adds a line or an entry to the import list of the affected module with the
compiler error and adds a line in the Log window. Leksah imports individual elements,
but imports all elements of a class or data structure if one of them is needed. The import
helper can work with qualified identifiers and should add a correct import statement.
You can as well select add all imports from the context menu, in which case all Not in
scope errors will be treated at once. After providing the imports you have to save the
file and recompile.

The import helper just looks in imported packages, so if you miss a package import
it will not be treated automatically. If you find that an identifier is not exported by
another module and you add it their and then run the import helper again, it will still
not find the identifier, because the meta information the import mechanism depends on
was not updated. So choose Metadata / Update project and choose add import again
and it should work.

Obviously some not in scope errors have other reasons, e.g. you have misspelled some
identifier, which can’t be resolved by adding imports.

17

Current.session Config flags

Default.candy [‘

Default.hs

Descriptionpphs | Build flags
[

Keymap.hs
MakeEditorhs | 1i2ddock flags

Package Flags | [_executable

PackageEditor.hs

Executable flags

PackageFlags.hs

Panes.hs

Parameters.hs | |nstall flags

Preferences.hs |

PrinterParser.hs
Register flags

Readerhs

Types.hs
ViewFrame.hs | Unregister flags

Source Distribution flags

ok 3¢ schlieBen

Figure 13: Package Flags

5.4 Flags and other operations

As you can see in the package menu (Figure 9) you can do more operations with packages,
which are mostly provided by the Cabal system. You can clean, configure, build and if
you have build an executable run your program. And other operations like building a
source distribution and building haddock documentation. For more details about these
operations (as said before) consult the Cabal User’s Guide. Since many of these oper-
ations can take additional flags you can enter these by selecting Package / Edit flags.
Then the Flags pane opens up (Figure 12). For example haddock documentation for the
leksah source will not be build, because it is not a library unless you pass the —executable
flag. The flags are stored in a file called IDE.flags in the root folder of the project.

6 Navigation and Metadata

Leksah collects data about all installed Haskell packages on your system. It does this
by reading the Haskell interface files which GHC writes. In addition it adds source
positions and comments of packages for which a cabal file with the corresponding source
files can be found. The package you work on is treated differently, as not only external
exported entities are collected, but all exports from all modules are collected. This makes
it possible to get information about identifiers:

e Which packages and modules export this identifier?

18

http://www.haskell.org/ghc/docs/latest/html/Cabal/index.html

@ Local () Package) System Blacklist

Modules Packages & Interface
= Editor I E signalDisconnectall
F Basics leksah-0.4 F E Connections
[F Composite leksah-0.4 b D E Connection
E MakeEditor leksah-0.4 b € E PaneMonad
E Parameters leksah-0.4 F ¥ StandardPath
E Simple leksah-0.4 b D E IDEPane

~ Frame F E PaneName

b C E RecoverablePane

Edit source

= IDE Expand here b D E PanelLayout
v Core Collapse here P D E PaneDirection
E State | Expand all leksah-0.4 I E PanePath
[Types | Collapse all |eksah-0.4
[F Descriptior leksah-0.4
[Exception W leksah-0.4 4]
a [5 G [T2]

Default.prefs | Modules | Search
Figure 14: Modules pane
e What is the type of the exported identifier?

e If the source is found: What is the comment for this identifier?

e If the source is found: What is the implementation?

If you like to get information about some identifier in the code, the easiest way is to press
Ctrl and double click on it. If the id is known unambiguously the modules and info pane
will show information about it. If more then one possibility exist the search pane will

open and present the alternatives.

More precisely the operation is not triggered by the double click operation, but by the
release of the left button. So if the double click does not select the right area for a special
id like ++ you can select the desired characters with the left button and then release it

while you hold down the Ctrl key.

for, because it is the only imported one.

text search. Please try it out on your own.

Currently Leksah only uses the collected “global” metadata, and does not know
what the Haskell compiler knows about your code. So definitions which are local to
a module will not be found, types of variables which are not exported will not be
known, and Leksah does not known about which definition is the one you are looking

We will work on adding this information in the future, but we started with the
“global” approach from the intuition, that it takes most of our time to find something
that is not already imported and “known”. A local definition can be easily find by a

6.1 The Modules Pane

In the modules pane (Figure 13) you get information about modules and their interface.
The displayed information depends on the open package. If no package is open only the

19

system scope has information. (If a package is open its name is displayed in the third
subdivision from the left of the status bar.)

We assume there is an open package. You can then select the scope of the displayed
information with the radio button on top of the modules pane. The Local scope shows
only modules which are part of the project. The Package scope shows all modules of the
package and all packages the current package depends on. The System scope shows all
modules of installed packages of the system. (You can get this list with ghc-pkg list).

If the Blacklist toggle button is selected, the packages in the blacklist are not displayed.
This doesn’t mean that the information of this packages is not loaded or otherwise ac-
cessible. (I invented the blacklist mainly for the GHC package, which is very big and
does not use name-spaces and so pollutes the list). The Blacklist can be edited in the
preferences dialog.

If you select a module in the modules list, its interface is displayed in the interface list
on the right. You can search for a module or package by selecting the modules list and
typing some text. With the up and down arrows you find the next/previous matching
item. With the escape key or by selecting any other GUI element you leave the search
mode. If there is a little icon with a text in front of a module, Leksah has found a source
file for this module. You can open this source file, or bring it to the front if it is already
open with a double click on the module. (the same can be done with selecting Edit source
from the context menu.

By selecting an element in the Interface List the so called Info Pane is shown with
additional information. If there is a little with a text in front of an identifier, Leksah has
found a source location for this element. You can open this source file, or bring it to the
front and display the source for the selected location with a double click on the element.
(the same can be done with selecting Go to definition from the context menu. You can
again search for an identifier by selecting the interface list and typing some text.

The easiest way if you want to edit some file is not to choose File open, but to select
the modules pane with local scope, find the module by entering text, and double click
for editing the file.

New module

Graphics.Ul.Frame.Panes,|]

Root of the source path
L ec |

[] Is this an exposed library module

<Hok €) abbrechen

Figure 15: Construct module dialog

The easiest way to add a new module is by selecting Add module from the context
menu of the modules pane. The Construct Module dialog will open (Figure 14). You

20

-- | leksah-8.4.3:Control.Event
-- Every event needs a selector, which should identify the type of event
class (Eq delta, Ord delta, Show delta) => EventSelector delta

Source Modules Refs Docu Search
Info | Log
—

Figure 16: Info pane

have to enter the name of the module, the source path to use if their are alternatives and
if the module is exposed, if it is a library. Leksah will construct the directory, modify
the cabal file and construct an empty module file from a template.

6.2 The Info Pane

The Info Pane (Figure 15) shows information about an interface element, which may be
a function, a class, a data definition It shows the identifier, the package and module
that it is exported by, it’s Haskell type and if possible a comment.

If you select an identifier in an editor, and their is information about this identifier
available in the package scope, it is automatically displayed in the info pane. The easiest
way to do this is to double click on an identifier while pressing Ctrl. For special identifiers
(e.g. a_) select the word and release the button, actually the search is initiated by the
release of the button.

Remember that only statically collected information is available this way. So the meta
data contains only information about items which are exported by some module.

If there is a source locating attached you can go to the definition by clicking the Source
button.

You can select the module and the interface element in the modules pane by clicking
the Modules button.

With the Refs button a pane opens which displays the modules which imports this
element.

With the Docu button you can initialite an external search in a browser with hayoo
or Hoogle, depending on the configuration in the Preferences.

With the Search button you can initiaite a metadata search for the identifier.

6.3 The Search Pane

You can search for a string by typing in characters in the entry at the bottom of the
pane. The search result depends on the settings in the search pane (Figure 16). You can
choose:

1. The scope in which to search, which can be local, package or system.

2. The way the search is executed, which can be exact, prefix or as a regular expression.

21

O Local
Symbol
Assertable
Assertable
Assertion

I Mo N

Assertion

Assertion

K AssertionFailed
D AssertionFailed
D AssertionFailed
D AssertionFailed
D AssertionFailed
K AssertionFailed
K AssertionFailed
D AssertionFailed
D AssertionFailed
C AssertionPredicable

 AccartinnPradicahla

() Package
Module
E Test.HUnit.Base
&2 Test.HUnit
G- Test.HUnit.Base
[Test.HUnit.Lang
&2 Test.HUnit
E GHC.IOBase
[f GHC.IOBase
& Control.Exception
& Control.Exception.Base
&> Control.OldException
[E Control.OldException
GHC.IOBase
GHC.I0Base
& Control.Exception
[f Test.HUnit.Base

&> Tact Hiinit

@ System
Package
HUnit-1.2.0.3
HUnit-1.2.0.3
HUNit-1.2.0.3
HUnit-1.2.0.3
HUnit-1.2.0.3
base-4.0.0.0
base-4.0.0.0
base-4.0.0.0
base-4.0.0.0
base-4.0.0.0
base-4.0.0.0
base-3.0.3.0
base-3.0.3.0
base-3.0.3.0
HUnit-1.2.0.3
uiinir1 203)

B

@ Prefix O Regex

[_] Case sensitive

O Exact
Iass{
Modules | Search
) Local

Figure 17: Search pane

@ Package

) System

[Gu\Event << leksah-0.4.3:Graphics.Ul.Editor.Basics

Modules

Packages

73 Graphics.Ul.Editor.Composite leksah-0.4.3
"% Graphics.Ul.Editer.MakeEditor leksah-0.4.3
73 Graphics.Ul.Editor.Simple leksah-0.4.3

7% IDE.ImportTool
‘% IDE.Pane.Modules

7% |DE.Pane.PackageFlags
“} IDE.Pane.Preferences

Info | Log ||References

leksah-0.4.3
leksah-0.4.3
leksah-0.4.3
leksah-0.4.3

Figure 18: References Pane

3. You can choose if the search shall be case sensitive or not.

The result of the search is displayed in the list part of the Search pane. You can see the
sort of expression by the icon before the identifier. You can see if the module reexports
the identifier, or if the source of the identifier is reachable. When you single click on a
search result, the info pane shows the corresponding information. If you double click on
an entry, the modules and info pane shows the corresponding information.

If you double click on an identifier and press Ctrl in a source buffer, it is a case sensitive
and exact search in the package scope. So this does not depend on the selection in the
search pane, even if the result is displayed in the list box of the search pane.

In the info pane you can click the button Refs, if you want to explore which modules
import the selected element. This information is extracted from the Haskell Interface

file.

22

Editor Paths under which haskell sources for packages may be found
GUI Options Jhome/jutaro/Haskell

Jhomefjutaro/Develop

Add Remove

| | select folder
Packages which are excluded from the modules pane-

Package Version
ghc -any

Add Remove

Package Name

"HUnit" <
Version

Any Version

Update metadata after every build

Update metadata at startup

«// Anwenden Restore (2 speichern 3¢ schlieBen

Figure 19: Metadata Preferences

6.4 The References Pane

As said in the end of the last section, this pane shows which modules import a certain
element. The element is displayed in the top, and the modules which import it are
displayed in the list box. If you double click on an entry in the list box, the corresponding
source will be opened if possible. Then leksah tries a text search on the selected element.

6.5 Metadata collection

Metadata collection depends on the configuration and can

be manually triggered. (Lol session Viev
If you select Metadata / Update Project the metadata Update Project

for the current project is collected from the .hi files and the Lt s

source files. You should select this if the metadata of the show Info Strg+1 |

current project is out of sync. Show Modules Strg-+M I
If you select Metadata / Update Lib Leksah checks if a =T ==

new library has installed and if this is the case collects meta-

data for it. Figure 20: File menu

In the Metadata part of the preferences (Figure 9) you
can edit the settings concerning metadata collection.
Metadata collection is a critical point, because it depends on the installation, envi-

23

ronment, the installed packages, etc. However, to make good use of leksah it is highly
desirable to have metadata with sources available for the packages you really need. So
here we explain how metadata collection works:

1. Since cabal install has sources only as compressed tar archives on your machine,
leksah needs to unpack this. You can see if this works by browsing the folders. You
can initiate this step by calling leksah -x - n. If only root has write access to some
cabal packages do a: sudo leksah -x -n (-~Extract -NoGui).

2. Now leksah looks for all cabal files it can find below the source folders. From this
information the file source packages.txt in the .leksah folder is written. If you
miss sources for a package in Leksah, consult this file if the source place of the
package has been correctly found. You can run this step by: leksah -s -n (—Sources
—NoGui).

3. The metadata collection itself proceeds in two steps: A) Extract info from .hi files,
which is usually no problem. B) Add source locations and comments by parsing
the sources. This can be a problem because of preprocessing, header files, language
extensions, etc. The result is stored in a folder under the .leksah folder (under your
home folder). The folder will be named after the compiler version (e.g. ghc-6.8.1).
In this folder for every package a metadata file is stored (e.g. binary-0.4.1.pack).
These files are in binary format.

You can rebuild the whole metadata when you start Leksah with the -r -n option
(-Rebuild -NoGui).

You can update the metadata with: leksah -c¢ -n (—Collect -NoGui)

If you have a problem with a certain package, remove its metadata file , e.g. rm
~/leksah-ghc-.../binary*. And then do a collect: leksah -¢ -n. Look for error
messages in the Console to see if some problem is reported.

4. For the current package a slightly different procedure is used, because leksah not
only looks for exported library entities, but for all exports of every module. The
written metadata file has the extension .packw. (We plan to replace this by using
only GHC-API for querying metadata for the current package dynamically.

7 Configuration

Leksah is highly customizable. Here it is explained how this works.

7.1 Window Layout

In Leksah there may be an active pane. The name of this pane is displayed in the second
compartment from the left side in the status bar. Some actions like moving, splitting,
closing panes or finding or replacing items in a text buffer act on the current pane, so
check the display in the status bar to see if the pane you want to act on is really active.

24

Editor LogView Font

Sans
Metadata
Window default size

X Y

10

|800) [so0

Browser

£l

| firefox

Standard source pane path

| [Leftr]

Standard log pane path

|[RightP,BottomP]

Standard medules pane path

| [RightP, TopP]

Name of the keymap

| Default

«// Anwenden Restore _?_‘ﬁpei(hem

Figure 22: GUI Preferences

3¢ schlieBen

The layout of the Leksah window contains areas which [Help

contain notebooks which contain so called panes. The di-
vision between the two areas is adjustable by the user by
dragging a handle. The areas form a binary tree, although
this tree is not visible to the user. Every area can be split
horizontally or vertically. Panes can collapsed, the effect of
collapsing depends on the position of the pane in the binary
layout tree.

Active panes can be moved between areas in the window.
The tabs of notebooks can be positioned at any of the four
directions, or the tabs can be switched off. Note that holding
the mouse over the tabs and selecting the right button brings
up a menu of all panes in this area, so that you can for
example quickly select one of many open source buffers.

The layout will be saved with sessions. The session mech-
anism will be explained in the next section. Currently there
is no way to load different layouts independent of the other
data stored in a sessions.

&

Split Horizontal
Split Vertical
Collapse

{ Close pane

Move Left
Move Right
Move Up
Move Down

Tabs Left
Tabs Right
Tabs Up
Tabs Down
Tabs On/Off

Clear Log
Toggle Toolbar

Strg+2
Strg+3
Strg+1

Umschalt+Alt+Links
Umschalt+Alt+Rechts
Umschalt+Alt+Hoch
Umschalt+Alt+Runter

Strg+T

Figure 21: View menu

In the GUI Options part of the Preferences (Figure 21), you can configure options
regarding the layout, namely were windows of certain types are opened.

25

7.2 Using the Flipper to Switch Active Panes

You can change the active pane using a keyboard shortcut to bring up the flipper. It lists
the most recently used panes first so they are easier to get to. The default shortcuts for
the flipper are Ctrl+Tab and Ctrl4-Shift4+Tab or Ctrl4+-Page Down and Ctrl4+-Page Up.

7.3 Session handling

When you close Leksah the current state is saved in the
file Current.session in the ~/.leksah folder. A session con- E 1 view Helr
tains the layout of the window, its population, the active Save Session
package and some other state. When you restart Leksah it S
recovers the state from this information. When you close a
package, the session is saved in the project folder in the file
IDE.session. When you open a project and Leksah finds a
IDE.session file in the folder of the project you are going to
open, you get prompted if you want to open this session. This should help you to switch
between different packages you are working on.

Beside of this you have the possibility to store and load named sessions manually by
using the session menu. Actually you may live well without using this feature.

You can as well choose to mark Forget Session, if you don’t want the current session
to be stored. This can be useful, if something goes wrong (e.g. you hit accidentally Ctrl
- 0 and the layout collapses completely).

[C] Forget Session

Figure 23: Session menu

7.4 Shortcuts

You can configure the keystrokes by providing a .keymap file, which can either be in the
Jleksah folder or in the data folder. The name of the key map file to be used can be
specified in the Preferences dialog. A line in the .keymap file looks like:

<ctrl>o -> FileOpen "Opens an existing file"

Allowed Modifiers are <shift> <ctrl> <alt> <apple> <compose>. <apple> is the
Windows key on PC keyboards. <compose> is often labeled Alt Gr. It is as well possible
to specify Emacs like keystrokes in the following way:

<ctrl>x/<ctrl>f -> FileOpen "Opens an existing file"

The comment on the right will be displayed as tool tips on top of toolbar buttons, if
such exist for this action.

The name of the action can be any one of the ActionDescr’s given in the action function
in the Module IDE. Menu.

Whenever you call an action, by a menu, a toolbar or a keystroke, the keystroke with
its associated ActionsString is displayed in the Status bar in the leftmost compartment.

Every keystroke shall obviously only be associated with one action, and more important
every action may only have one associated keystroke.

Simple keystrokes are shown in the menu, but Emacs like keystrokes are not. This
is because simple keystrokes are delegated to the standard gtk mechanism, while other
keystrokes are handled by Leksah.

26

7.5 Configuration files

Leksah stores its configuration in a directory called ~/.leksah under your home folder.

The file Default.prefs stores the general Preferences. These Preferences can be edited
in a dialog by choosing Help/Edit Prefs from the menu. If this file is not available the
Default.prefs file from the installed /data folder will be used.

The Current.session file stores the state of the last session, so that Leksah will recover
the state from the last session. If this file is not available it will be taken from the
installed /data folder.

The source packages.txt file stores source locations for installed packages. It can be
rebuild by calling Leksah with the -s or —Sources argument . Do this after you moved
your source or added sources for previous installed packages without sources.

The folder will contain one or many other folders (e.g. ghc-6.8.1). In this folder
collected information about installed packages for a compiler version is stored. (e.g.
binary-0.4.1.pack). These files are in binary format. If you start Leksah with the -r or
—Rebuild argument, it cleans all .pack files and rebuilds everything.

Files for Keymaps and SourceCandy may be stored here and will be found according
to the name selected in the Preferences Dialog. Leksah first searches in this folder and
after this in the /data folder.

7.6 Menus and Toolbars

Menus and Toolbars can be customized by editing the file Default. menu. The format is
a gtk+ xml format. Leksah requires the definition of one menu bar and one toolbars in
this order. The names of the actions can be all in the ActionDescr’s given in the action
function in the Module IDE. Menu.

8 The Future

The development of an IDE is a big issue, so Leksah is intended to become a community
project and everyone is invited to contribute. If you are a user or just test Leksah, we
would appreciate to here from you and your problems with and wishes for Leksah.

I personally plan to develop up to version 1.0. So, if the community does not show
enough interest, or some better alternative may appear, the features marked as Version
X may never be implemented.

8.1 Version 0.6

e Class pane
e History navigation
e On the fly error messages

e On the fly type inference

27

8.2 Version 1.0

Interpreter

Debugger

8.3 Version x

Versioning support (Darcs,...)
Test support (Quick check,...)
Coverage (HPC,...)

Profiling (Ghc Profiler,...)

Refactoring (HaRe,...)

FAD (Functional Analysis and Design,...)

Plugins

9 Appendix

9.1 Command line arguments

Usage: ide [OPTION...] files..

-r --Rebuild

-C --Collect

-u FILE --Uninstalled=FILE
-8 --Sources

-V --Version

-d --Debug

-1 NAME --LoadSession=NAME
-n --NoGUI

-x[FILE] --Extract[=FILE]
-h --Help

9.2 The Candy file

-- Candy file

Cleans all .pack files and rebuild everything
Collects new information in .pack files
Gather info about an uninstalled package
Gather info about pathes to sources

Show the version number of ide

Write ascii pack files

Load session

Don’t start the leksah GUI

Extract tars from cabal install directory
Display command line options

"->" 0x2192 Trimming --RIGHTWARDS ARROW
"<-" 0x2190 Trimming --LEFTWARDS ARROW
"=>" 0x21d2 --RIGHTWARDS DOUBLE ARROW
">=" 0x2265 --GREATER-THAN OR EQUAL TO
"<=" 0x2264 --LESS-THAN OR EQUAL TO

"/=" 0x2260 --NOT EQUAL TO

28

"&&" 0x2227 --LOGICAL AND

"]|" 0x2228 --LOGICAL OR

"++" 0x2295 --CIRCLED PLUS
--"::" 0x2551 Trimming --BAR
"::" 0x2237 Trimming --PROPORTION
",." 0x2025 --TWO DOT LEADER

"~" 0x2191 --UPWARDS ARROW

"==" (0x2261 --IDENTICAL TO

" . " 0x2218 --RING OPERATOR

"\" 0x03bb --GREEK SMALL LETTER LAMBDA
--"=<<" 0x291e --

">>=" 0x21a0

"$" 0x25ca

">>" 0x226b -- MUCH GREATER THEN
"forall" 0x2200 --FOR ALL
"exist" 0x2203 --THERE EXISTS
"not" 0x00ac --NOT SIGN

"alpha" 0x03bl

"beta" 0x03b2

"gamma" 0x03b3

"delta" 0x03b4

"epsilon" 0x03b5

9.3 The Keymap file

--Default Keymap file for Leksah

--Allowed Modifiers are <shift> <ctrl> <alt> <apple> <compose>
--<apple> is the Windows key on PC keyboards

--<compose> is often labelled Alt Gr.

--File

<ctrl>n -> FileNew "Opens a new empty buffer"

<ctrl>o -> FileOpen "Opens an existing file"

--<ctrl>x/<ctrl>f -> FileOpen "Opens an existing file"

<ctrl>s -> FileSave "Saves the current buffer"

--<ctrl>x/<ctrl>s -> FileSave "Saves the current buffer"
<ctrl><shift>s -> FileSaveAs "Saves the current buffer as a new file"
--<ctrl>x/<ctrl>w -> FileSaveAs "Saves the current buffer as a new file"
<ctrl>w -> FileClose "Closes the current buffer"

--<ctrl>x/k -> FileClose "Closes the current buffer"

<alt>F4 -> Quit "Quits this program"

--<ctrl>x/<ctrl>c -> Quit "Quits this program"

--Edit

<ctrl>z -> EditUndo "Undos the last user action"

--<ctrl>x/u -> EditUndo "Undos the last user action"

29

<shift><ctrl>y -> EditRedo "Redos the last user action"

--<ctrl>x/r -> EditRedo "Redos the last user action"

--<ctrl>x -> EditCut

--<ctrl>c -> EditCopy

--<ctrl>v -> EditPaste

-> EditDelete

<ctrl>a -> EditSelectAll "Select the whole text in the current buffer"
<ctrl>f -> EditFind "Search for a text string (Toggles the "

F3 -> EditFindNext "Find the next occurence of the text string"
<shift>F3 -> EditFindPrevious "Find the previous occurence of the text string"
<ctrl>1l -> EditGotoLine "Go to line with a known index"
<ctrl><alt>Right -> EditComment "Add a line style comment to the selected lies"
<ctrl><alt>Left -> EditUncomment "Remove a line style comment"
<alt>Right -> EditShiftRight "Shift right"

<alt>Left -> EditShiftLeft "Shift Left"

--View

<alt><shift>Left -> ViewMoveLeft "Move the current pane left"
<alt><shift>Right -> ViewMoveRight "Move the current pane right"
<alt><shift>Up -> ViewMoveUp "Move the current pane up"
<alt><shift>Down -> ViewMoveDown '"Move the current pane down"

<ctrl>2 -> ViewSplitHorizontal

"Split the current pane in horizontal direction"

<ctrl>3 -> ViewSplitVertical

"Split the current pane in vertical direction"

<ctrl>1 -> ViewCollapse "Collapse the panes around the currentla selected pane into o©
-> ViewTabsLeft "Shows the tabs of the current notebook on the left"
-> ViewTabsRight "Shows the tabs of the current notebook on the right"
-> ViewTabsUp '"Shows the tabs of the current notebook on the top"

-> ViewTabsDown "Shows the tabs of the current notebook on the bottom"
-> ViewSwitchTabs "Switches if tabs for the current notebook are visible"
<ctrl>t -> ToggleToolbar

-> HelpDebug

-> HelpAbout

<ctrl>b -> BuildPackage

<ctrl><alt>r -> RunPackage

<ctrl>j -> NextError

<ctrl><shift>j -> PreviousError

<ctrl>m -> ShowModules

<ctrl>i -> ShowlInterface

<ctrl>i -> ShowInfo

<ctrl><shift>e -> EditAlignEqual

<ctrl><shift>1 -> EditAlignLeftArrow

<ctrl><shift>r -> EditAlignRightArrow

<ctrl><shift>t -> EditAlignTypeSig

30

-- <alt>i -> AddOneImport
-- <alt><shift>i -> AddAllImports

9.4 Preferences file

Show line numbers:
True
--(True/False)
TextView Font: "Monospace 10"
Right margin: 101
--Size or O for no right margin
Tab width: 4
Use standard line ends even on windows:
True
Remove trailing blanks when saving a file:
True
Source candy: Default
--Empty for do not use or the name of a candy file in a config dir
Name of the keymap:
Default
--The name of a keymap file in a config dir
Editor Style: ""
LogView Font: "Sans 10"
Window default size:

(800,800)
--Default size of the main ide window specified as pair (int,int)
Browser: "firefox"
Standard source pane path:
[LeftP]
Standard log pane path:
[RightP,BottomP]
Standard modules pane path:
[(RightP,TopP]
Paths under which haskell sources for packages may be found:
(]

Packages which are excluded from the modules pane:
[Dependency (PackageName "ghc") AnyVersion]
Update metadata after every build:
True
Update metadata at startup:
True

31

9.5 Session File

This file is only displayed partial to give you an idea of what it may contain

Time of storage:

"Mon Jan 19 10:35:04 CET 2009"
Layout: VerticalP (TerminalP (Just TopP) 0)
Population: [(Just (BufferSt (BufferState ...
Window size: (1440,850)
Active package:

Just "/home/j/Documents/Develop/leksah/leksah.cabal"
Active pane: Just "Log"
Toolbar visible:

True
FindbarState: (False,FindState ...

32

	Introduction
	Further Information
	Release Notes
	Version 0.4 Beta Release February/March 2009
	Version 0.1 Alpha Release February 2008

	Installing Leksah
	Generic Installation Instructions
	Install GHC (Glasgow Haskell Compiler)
	Install Gtk2Hs
	Install Cabal
	Install Leksah
	Where Things Are Installed

	OS X (using MacPorts)
	Install MacPorts
	Set Variants To Use Quartz (Optional)
	Update Gtk2Hs Portfile (0.9.13 Will Not Work)
	Install
	Make It Look Nice
	Point Leksah At The Source

	Ubuntu (8.10)
	Install Prerequisites
	Install GHC (Once 6.10.1 is in the universe repository)
	Instell GHC (Until then install from source)
	Install Cabal
	Install Gtk2Hs
	Add Cabal To Your PATH
	Install Leksah

	First start of Leksah
	The Editor
	Search and Replace
	Source Candy
	Completion
	Background Build
	Editor Preferences

	Packages (Cabal)
	Package Editor
	Building
	Import Helper
	Flags and other operations

	Navigation and Metadata
	The Modules Pane
	The Info Pane
	The Search Pane
	The References Pane
	Metadata collection

	Configuration
	Window Layout
	Using the Flipper to Switch Active Panes
	Session handling
	Shortcuts
	Configuration files
	Menus and Toolbars

	The Future
	Version 0.6
	Version 1.0
	Version x

	Appendix
	Command line arguments
	The Candy file
	The Keymap file
	Preferences file
	Session File

